OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 23 — Aug. 10, 2009
  • pp: 4616–4624

Dynamic calibration for improving the speed of a parallel-aligned liquid-crystal-on-silicon display

Joaquín Otón, Pierre Ambs, María S. Millán, and Elisabet Pérez-Cabré  »View Author Affiliations

Applied Optics, Vol. 48, Issue 23, pp. 4616-4624 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1536 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The speed of most parallel-aligned liquid-crystal-on-silicon (LCoS) spatial light modulators (SLMs) is limited to the video rate of their drivers, which is a limitation for high-speed applications. However, the LCoS SLM presented here has a driver allowing a frequency range of up to 1011 Hz . Using the static phase modulation characterization and the static lookup table (LUT), the phase modulation characteri zation versus frequency shows that the SLM can operate at around 130 Hz or even higher for small phase changes and at 32 Hz for extreme phase changes. A dynamic calibration is carried out, and we propose a method allowing an increase of the frame rate while maintaining a maximum phase modulation of 2 π . Experimental results of dynamic diffractive optical elements displayed on the SLM at a frame rate of 205 Hz show that the dynamic LUT improves the reconstruction quality.

© 2009 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(220.1000) Optical design and fabrication : Aberration compensation
(230.3720) Optical devices : Liquid-crystal devices
(230.6120) Optical devices : Spatial light modulators

ToC Category:
Optical Design and Fabrication

Original Manuscript: April 3, 2009
Revised Manuscript: July 22, 2009
Manuscript Accepted: July 24, 2009
Published: August 4, 2009

Joaquín Otón, Pierre Ambs, María S. Millán, and Elisabet Pérez-Cabré, "Dynamic calibration for improving the speed of a parallel-aligned liquid-crystal-on-silicon display," Appl. Opt. 48, 4616-4624 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Boulder Nonlinear Systems, Inc; Products (BNS, 2008), http://www.bnonlinear.com.
  2. Hamamatsu Spatial Light Modulator (Hamamatsu, 2008), http://www.hamamatsu.com.
  3. Holoeye Photonics AG & Holoeye Corporation (2008), http://www.holoeye.com.
  4. E. Frumker and Y. Silberberg, “Phase and amplitude pulse shaping with two-dimensional phase-only spatial light modulators,” J. Opt. Soc. Am. B 24, 2940-2947 (2007). [CrossRef]
  5. A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Near-perfect hologram reconstruction with a spatial light modulator,” Opt. Express 16, 2597-2603(2008). [CrossRef]
  6. A. V. Kuzmenko and P. V. Yezhov, “Iterative algorithms for off-axis double-phase computer-generated holograms implemented with phase-only spatial light modulators,” Appl. Opt. 46, 7392-7400 (2007). [CrossRef]
  7. G. Milewski, D. Engstrom, and J. Bengtsson, “Diffractive optical elements designed for highly precise far-field generation in the presence of artifacts typical for pixelated spatial light modulators,” Appl. Opt. 46, 95-105 (2007). [CrossRef]
  8. A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Diffractive optical tweezers in the Fresnel regime,” Opt. Express 12, 2243-2250 (2004). [CrossRef]
  9. W. Osten, C. Kohler, and J. Liesener, “Evaluation and application of spatial light modulators for optical metrology,” Opt. Pura Apl. 38, 71-81 (2005).
  10. B. E. A. Saleh and K. Lu, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 240-246 (1990). [CrossRef]
  11. C. Soutar and K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 2704-2712 (1994). [CrossRef]
  12. J. A. Davis, I. Moreno, and P. Tsai, “Polarization eigenstates for twisted-nematic liquid-crystal displays,” Appl. Opt. 37, 937-945 (1998). [CrossRef]
  13. J. A. Davis, D. B. Allison, K. G. D'Nelly, M. L. Wilson, and I. Moreno, “Ambiguities in measuring the physical parameters for twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 38, 705-709 (1999). [CrossRef]
  14. V. Duran, J. Lancis, E. Tajahuerce, and Z. Jaroszewicz, “Univocal determination of the cell parameters of a twisted nematic liquid crystal display by single-wavelength polarimetry,” J. Appl. Phys. 97, 043101 (2005). [CrossRef]
  15. J. L. Harriman, A. Linnenberger, and S. A. Serati, “Improving spatial light modulator performance through phase compensation,” Proc. SPIE 5553, 58-67 (2004). [CrossRef]
  16. X. Xun and R. W. Cohn, “Phase calibration of spatially nonuniform spatial light modulators,” Appl. Opt. 43, 6400-6406(2004). [CrossRef]
  17. M. Bock, S. K. Das, R. Grunwald, S. Osten, P. Staudt, and G. Stibenz, “Spectral and temporal response of liquid-crystal-on-silicon spatial light modulators,” Appl. Phys. Lett. 92, 151105-151103 (2008). [CrossRef]
  18. N. W. Hart, A. Sergeyev, and T. J. Schulz, “Characterizing static aberrations in liquid crystal spatial light modulators using phase retrieval,” Opt. Eng. 46, 086601 (2007). [CrossRef]
  19. J. Otón, P. Ambs, M. S. Millán, and E. Pérez-Cabré, “Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel aligned liquid crystal on silicon displays,” Appl. Opt. 46, 5667-5679 (2007). [CrossRef]
  20. A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Wavefront correction of spatial light modulators using an optical vortex image,” Opt. Express 15, 5801-5808 (2007). [CrossRef]
  21. S. Serati, X. Xia, O. Mughal, and A. Linnenberger, “High-resolution phase-only spatial light modulators with submillisecond response,” Proc. SPIE 5106, 138-145(2003). [CrossRef]
  22. D. J. McKnight, K. M. Johnson, and R. A. Serati, “256×256 liquid-crystal-on-silicon spatial light modulator,” Appl. Opt. 33, 2775-2784 (1994). [CrossRef]
  23. T. Ewing, S. Serati, and K. Bauchert, “Optical correlator using four kilohertz analog spatial light modulator,” Proc. SPIE 5437, 123-133 (2004). [CrossRef]
  24. D. J. Cho, S. T. Thurman, J. T. Donner, and G. M. Morris, “Characteristics of a 128×128 liquid-crystal spatial light modulator for wave-front generation,” Opt. Lett. 23 (12), 969-971 (1998). [CrossRef]
  25. S. Serati and J. Harriman, “Spatial light modulators considerations for beam control in optical manipulation applications,” Proc. SPIE 6326, 63262W (2006).
  26. A. Lizana, I. Moreno, C. Iemmi, A. Márquez, J. Campos, and M. J. Yzuel, “Time-resolved Mueller matrix analysis of a liquid crystal on silicon display,” Appl. Opt. 47, 4267-4274(2008). [CrossRef]
  27. A. Lizana, I. Moreno, A. Márquez, C. Iemmi, E. Fernández, J. Campos, and M. J. Yzuel, “Time fluctuations of the phase modulation in a liquid crystal on silicon display: characterization and effects in diffractive optics,” Opt. Express 16, 16711-16722 (2008). [CrossRef]
  28. Z. Zhang, G. Lu, and F. T. S. Yu, “Simple method for measuring phase modulation in liquid crystal televisions,” Opt. Eng. 33, 3018-3022 (1994). [CrossRef]
  29. F. Wyrowski and O. Bryngdahl, “Iterative Fourier-transform algorithm applied to computer holography,” J. Opt. Soc. Am. A 5, 1058-1065 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited