OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 23 — Aug. 10, 2009
  • pp: 4625–4636

Determining the effect of species composition on temperature fields of tank flames using real-time holographic interferometry

Markus Gawlowski, Kerry E. Kelly, Laurie A. Marcotte, and Axel Schönbucher  »View Author Affiliations


Applied Optics, Vol. 48, Issue 23, pp. 4625-4636 (2009)
http://dx.doi.org/10.1364/AO.48.004625


View Full Text Article

Enhanced HTML    Acrobat PDF (1590 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Interference fringe fields and the visible flame field of a 50 mm diameter n-hexane tank flame were simultaneously measured using a real-time holographic interferometer with special image optics. An inhouse developed image processing method was applied to the holographic images to calculate the interference fringe order profiles. The effect of species composition on temperature profiles was studied by considering three different cases: using the measured species profiles, using an overall reaction mecha nism based on stoichiometric combustion, and by assuming that the flame consists of hot air. The results show that species composition has the largest effect on temperature fields in regions near the flame axis at lower axial distances. In the region of the plume zone, the flame consists primarily of hot air due to the increase in total entrained air.

© 2009 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(120.2880) Instrumentation, measurement, and metrology : Holographic interferometry
(120.6780) Instrumentation, measurement, and metrology : Temperature
(280.2470) Remote sensing and sensors : Flames
(090.5694) Holography : Real-time holography

ToC Category:
Holographic Interferometry

History
Original Manuscript: April 13, 2009
Revised Manuscript: July 20, 2009
Manuscript Accepted: July 22, 2009
Published: August 4, 2009

Citation
Markus Gawlowski, Kerry E. Kelly, Laurie A. Marcotte, and Axel Schönbucher, "Determining the effect of species composition on temperature fields of tank flames using real-time holographic interferometry," Appl. Opt. 48, 4625-4636 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-23-4625


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Hailwood, M. Gawlowski, B. Schalau, and A. Schönbucher, “Conclusions drawn from the Buncefield and Naples incidents regarding the utilization of consequence models,” Chem. Eng. Technol. 32, 207-233 (2009). [CrossRef]
  2. T. L. Henriksen, T. A. Ring, E. G. Eddings, and G. J. Nathan, “Puffing frequency and soot extinction correlation in JP-8 and heptanes pool fires,” Combust. Sci. Technol. 180, 699-712(2008). [CrossRef]
  3. L. Audouin, G. Kolb, J. L. Torero, and J. M. Most, “Average centreline temperatures of a buoyant pool fire obtained by image processing of video recordings,” Fire Safety J. 24, 167-187 (1995). [CrossRef]
  4. B. Arnold, V. Banhardt, V. Bieller, H. Kasper, M. Kaufmann, R. Lucas, and A. Schönbucher, “Simultaneous observation of organized density structures and the visible field in pool fires,” in Proceedings of 21th Symposium (Int.) on Combustion (The Combustion Institute, 1986), pp. 83-92.
  5. J. A. Qi, C. W. Leung, W. O. Wong, and S. D. Probert, “Temperature-field measurements of a premixed butane/air circular impinging-flame using reference-beam interferometry,” Appl. Energy 83, 1307-1316 (2006). [CrossRef]
  6. M. Gawlowski, M. Hailwood, I. Vela, and A. Schönbucher, “Deterministic and probabilistic estimation of appropriate distances: motivation for considering the consequences for industrial sites,” Chem. Eng. Technol. 32, 182-198 (2009). [CrossRef]
  7. S. M. Tieng, W. Z. Lai, and T. Fujiwara, “Holographic temperature measurement on axisymmetric propane-air, fuel-lean flame,” Meas. Sci. Technol. 3, 1179-1187 (1992). [CrossRef]
  8. R. A. Dobbins, “Soot inception temperature and the carbonization rate of precursor particles,” Combust. Flame 130, 204-214 (2002). [CrossRef]
  9. D. Y. Zhang and H. C. Zhou, “Temperature measurement by holographic interferometry for non-premixed ethylene-air flame with a series of state relationships,” Fuel 86, 1552-1559 (2007). [CrossRef]
  10. A. Stella, G. Guj, and S. Giammartini, “Measurement of axisymmetric temperature fields using reference beam and shearing interferometry for application to flames,” Exp. Fluids 29, 1-12 (2000). [CrossRef]
  11. J. Doi and S. Sato, “Three-dimensional modeling of the instantaneous temperature distribution in a turbulent flame using multidirectional interferometer,” Opt. Eng. 46, 015601 (2007). [CrossRef]
  12. C. Shakher and A. K. Nirala, “A review on refractive index and temperature profile measurements using laser-based interferometric techniques,” Opt. Lasers Eng. 31, 455-491(1999). [CrossRef]
  13. S. M. Tieng, C. C. Lin, Y. C. Wang, and T. Fujiwara, “Effect of composition distribution on holographic temperature measurement of a diffuse flame,” Meas. Sci. Technol. 7, 477-488(1996). [CrossRef]
  14. G. P. Montgomery and D. L. Reuss, “Effects of refraction on axisymmetric flame temperatures measured by holographic interferometry,” Appl. Opt. 21, 1373-1380 (1982). [CrossRef] [PubMed]
  15. C. C. Chen, K. C. Chang, and S. M. Tieng, “Effect of composition change on temperature measurements in a premixed flame by holographic interferometry,” Opt. Eng. 31, 353-362(1992). [CrossRef]
  16. J. D. Posner and D. Dunn-Rankin, “Temperature field measurements of small, nonpremixed flames with use of an Abel inversion of holographic interferograms,” Appl. Opt. 42, 952-959 (2003). [CrossRef] [PubMed]
  17. T. Konishi, A. Ito, Y. Kudo, A. Narumi, K. Saito, J. Baker, and P. M. Struk, “Simultaneous measurement of temperature and chemical species concentrations with a holographic interferometer and infrared absorption,” Appl. Opt. 45, 5725-5732(2006). [CrossRef] [PubMed]
  18. P. A. Ross and M. M. El-Wakil, “A two-wavelength interferometric technique for the study of vaporization and combustion of fuels,” in AIIA Progress in Astronautics and Rocketry: Liquid Rockets and Propulsion, L. E. Bollinger, M. Goldsmith, and A. W. Lemmon, Jr., eds. (Academic, 1960), pp. 265-298.
  19. T. Kreis, Handbook of Holographic Interferometry (Wiley-VCH, 2005).
  20. W. Hauf and U. Grigull, “Optical methods in heat transfer,” in Advances in Heat Transfer, J. P. Hartnett and T. F. Irvine, Jr., eds. (Academic, 1970), Vol. 6, pp. 267-274. [CrossRef]
  21. C. M. Vest, “Interferometry of strongly refracting axisymmetric objects,” Appl. Opt. 14, 1601-1606 (1975). [CrossRef] [PubMed]
  22. R. Lucas, “Holografische Synchroninterferometrie zur Untersuchung von Tankflammenfeldern und ihren kohärenten Strukturen,” Ph.D. thesis (University of Stuttgart, 1981).
  23. D. L. Reuss, “Temperature measurements in a radially symmetric flame using holographic interferometry,” Combust. Flame 49, 207-219 (1983). [CrossRef]
  24. C. M. Vest, Holographic Interferometry (Wiley, 1979).
  25. W. Hauf, U. Grigull, and F. Mayinger, Optische Meßverfahren der Wärme- und Stoffübertragung (Springer, 1991).
  26. A. F. Ibarreta and C.-J. Sung, “Flame temperature and location measurements of sooting premixed Bunsen flames by rainbow schlieren deflectometry,” Appl. Opt. 44, 3565-3575(2005). [CrossRef] [PubMed]
  27. M. D. Smooke, Y. Xu, R. M. Zurn, P. Lin, J. H. Frank, and M. B. Long, “Computational and experimental study of OH and CH radicals in axisymmetric laminar diffusion flames,” in Proceedings of 24th Symposium (Int.) on Combustion (The Combustion Institute, 1992), pp. 813-821. [CrossRef]
  28. R. Fristrom and A. Westenberg, Flame Structure (McGraw-Hill, 1965).
  29. R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using Matlab (Pearson Prentice Hall, 2004).
  30. R. A. Jones and P. L. Kadakia, “An automated interferogram analysis technique,” Appl. Opt. 7, 1477-1482 (1968). [CrossRef] [PubMed]
  31. W. C. Gardiner, Y. Hidaka, and T. Tanzawa, “Refractivity of combustion gases,” Combust. Flame 40, 213-219 (1981). [CrossRef]
  32. A. Walcher, “Nicht-isothermer Stofftransport und Reaktionsräume in Tankflammen,” Ph.D. thesis (University of Stuttgart, 1982).
  33. W. Brötz, A. Walcher, and A. Schönbucher, “Gaschromatographische Analyse der Flammengase einer n-Hexan-Tankflamme,” Erdöl-Kohle-Erdgas-Petrochem. 31, 347-353 (1978).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited