OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 24 — Aug. 20, 2009
  • pp: 4651–4662

Nonlinear reconstruction of absorption and fluorescence contrast from measured diffuse transmittance and reflectance of a compressed-breast-simulating phantom

Ronny Ziegler, Tim Nielsen, Thomas Koehler, Dirk Grosenick, Oliver Steinkellner, Axel Hagen, Rainer Macdonald, and Herbert Rinneberg  »View Author Affiliations

Applied Optics, Vol. 48, Issue 24, pp. 4651-4662 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (494 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the nonlinear reconstruction of local absorption and fluorescence contrast in tissuelike scattering media from measured time-domain diffuse reflectance and transmittance of laser as well as laser-excited fluorescence radiation. Measurements were taken at selected source–detector offsets using slablike diffusely scattering and fluorescent phantoms containing fluorescent heterogeneities. Such measurements simulate in vivo data that would be obtained employing a scanning, time-domain fluorescence mammograph, where the breast is gently compressed between two parallel glass plates, and source and detector optical fibers scan synchronously at various source–detector offsets, allowing the recording of laser and fluorescence mammograms. The diffusion equations modeling the propagation of the laser and fluorescence radiation were solved in frequency domain by the finite element method simultaneously for several modulation frequencies using Fourier transformation and preprocessed experimental data. To reconstruct the concentration of the fluorescent contrast agent, the Born approximation including higher-order reconstructed photon densities at the excitation wavelength was used. Axial resolution was determined that can be achieved by various detection schemes. We show that remission measurements increase the depth resolution significantly.

© 2009 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(170.0110) Medical optics and biotechnology : Imaging systems
(170.3830) Medical optics and biotechnology : Mammography
(170.7050) Medical optics and biotechnology : Turbid media

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: October 21, 2008
Revised Manuscript: July 19, 2009
Manuscript Accepted: July 21, 2009
Published: August 11, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Ronny Ziegler, Tim Nielsen, Thomas Koehler, Dirk Grosenick, Oliver Steinkellner, Axel Hagen, Rainer Macdonald, and Herbert Rinneberg, "Nonlinear reconstruction of absorption and fluorescence contrast from measured diffuse transmittance and reflectance of a compressed-breast-simulating phantom," Appl. Opt. 48, 4651-4662 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1-R43 (2005). [CrossRef]
  2. H. Rinneberg, D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, G. Wübbeler, R. Macdonald, and P. Schlag, “Detection and characterization of breast tumors by time-domain scanning optical mammography,” Opto-electron. Rev. 16, 147-162 (2008). [CrossRef]
  3. S. P. Poplack, T. D. Tosteson, W. A. Wells, B. W. Pogue, P. M. Meaney, A. Hartov, C. A. Kogel, S. K. Soho, J. J. Gibson, and K. D. Paulsen, “Electromagnetic breast imaging: results of a pilot study in women with abnormal mammograms,” Radiology (Oak Brook, Ill.) 243, 350-359 (2007). [CrossRef]
  4. D. J. Hawrysz and E. M. Sevick-Muraca, “Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents,” Neoplasia 2, 388-417 (2000). [CrossRef]
  5. A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696-6716 (2007). [CrossRef]
  6. R. Ziegler, “Modeling photon transport and reconstruction of optical properties for perfromance assessment of laser and fluorescence mammographs and analysis of clinical data,” Ph.D. dissertation (Free University of Berlin, 2008), http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000005928.
  7. T. Dierkes, D. Grosenick, K. T. Moesta, M. Möller, P. M. Schlag, H. Rinneberg, and S. Arridge, “Reconstruction of optical properties of phantom and breast lesion in vivo from paraxial scanning data,” Phys. Med. Biol. 50, 2519-2542 (2005). [CrossRef]
  8. V. A. Markel and J. C. Schotland, “Symmetries, inversion formulas, and image reconstruction for optical tomography,” Phys. Rev. E 70, 056616 (2004). [CrossRef]
  9. M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubbedu, “Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media,” Rev. Sci. Instrum. 79, 013103 (2008). [CrossRef]
  10. R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14, 024004 (2009). [CrossRef]
  11. R. Roy, A. Godavarty, and E. M. Sevick-Muraca, “Fluorescence-enhanced three-dimensional lifetime imaging: a phantom study,” Phys. Med. Biol. 52, 4155-4170 (2007). [CrossRef]
  12. V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26, 893-895 (2001). [CrossRef]
  13. E. Scherleitner and B. G. Zagar, “Optical tomography imaging based on higher order Born approximation of diffuse photon densitiy waves,” IEEE Trans. Instrum. Meas. 54, 1607-1611 (2005). [CrossRef]
  14. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, 1978).
  15. Y. Censor, “Row-action methods for huge and sparse systems and their applications,” SIAM Rev. 23, 444-466 (1981). [CrossRef]
  16. D. Grosenick, K. T. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50, 2429-2449 (2005). [CrossRef]
  17. O. Steinkellner, A. Hagen, C. Stadelhoff, D. Grosenick, R. Macdonald, H. Rinneberg, R. Ziegler, and T. Nielsen, “Recording of artifact-free reflection data with a laser and fluorescence scanning mammograph for improved axial resolution,” in Biomedical Optics/Digital Holography and Three-Dimensional Imaging/Laser Applications to Chemical, Security and Environmental Analysis on CD-ROM (Optical Society of America, 2008), BMD 45.
  18. C. Perlitz, K. Licha, F.-D. Scholle, B. Ebert, M. Bahner, P. Hauff, K. T. Moesta, and M. Schirner, “Comparison of two tricarbocyanine-based dyes for fluorescence optical imaging,” J. Fluoresc. 15, 443-454 (2005). [CrossRef]
  19. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41-R93 (1999). [CrossRef]
  20. D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevick-Muraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media,” Appl. Opt. 36, 2260-2272 (1997). [CrossRef]
  21. W. Bangerth, R. Hartmann, and G. Kanschat, “deal.II--a general-purpose object-oriented finite element library,” ACM Trans. Math. Softw. 33, 24 (2007). [CrossRef]
  22. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779-1792 (1995). [CrossRef]
  23. S. R. Arridge, Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299-309 (1993). [CrossRef]
  24. G. Voronoi, “Nouvelles applications des paramètres continus à la théorie des formes quadratiques,” J. Reine Angew. Math. 133, 97-178 (1907).
  25. A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24, 1377-1386 (2005). [CrossRef]
  26. T. Nielsen, B. Brendel, R. Ziegler, M. van Beek, F. Uhlemann, C. Bontus, and T. Köhler, “Linear image reconstruction for a diffuse optical mammography system in a non-compressed geometry using scattering fluid,” Appl. Opt. 48, D1-D13 (2009). [CrossRef]
  27. T. Köhler, R. Proksa, and T. Nielsen, “SNR-weighted ART applied to transmission tomography,” in Nuclear Science Symposium Conference Record (IEEE, 2003), pp. 2739-2742.
  28. A. Dax, “On row relaxation methods for large constrained least squares problems,” SIAM J. Sci. Comput. 14, 570-584 (1993). [CrossRef]
  29. Y. Pei, H. L. Graber, and R. L. Barbour, “Normalized-constraint algorithm for minimizing inter-parameter crosstalk in DC optical tomography” Opt. Express 9, 97-109 (2001).
  30. M. Schweiger and S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44, 1699-1717 (1999). [CrossRef]
  31. A. Soubret and V. Ntziachristos, “Fluorescence molecular tomography in the presence of background fluorescence,” Phys. Med. Biol. 51, 3983-4001 (2006). [CrossRef]
  32. B. W. Pogue, T. O. McBride, U. L. Osterberg, and K. D. Paulsen, “Comparison of imaging geometries for diffuse optical tomography of tissue,” Opt. Express 4, 270-286 (1999).
  33. V. A. Markel and J. C. Schotland, “Scanning paraxial optical tomography,” Opt. Lett. 27, 1123-1125 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited