OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 24 — Aug. 20, 2009
  • pp: 4676–4682

Reversal of degradation of information masks in lithium niobate

Daniel Sando, Esa Jaatinen, and Fabrice Devaux  »View Author Affiliations


Applied Optics, Vol. 48, Issue 24, pp. 4676-4682 (2009)
http://dx.doi.org/10.1364/AO.48.004676


View Full Text Article

Enhanced HTML    Acrobat PDF (937 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the reversal of degradation of information masks stored in self-defocusing lithium niobate. After a long writing time, the image degradation appears as the splitting of refractive-index patterns stored in the medium. The reversal is achieved simply by illuminating the crystal with incoherent light from a halogen lamp. The reversal occurs because the refractive-index changes responsible for the splitting are of a smaller magnitude and are therefore erased first during incoherent illumination. Additionally, we gain insight into the storage, degradation, and erasure dynamics using a time- dependent numerical model of the photorefractive effect in this medium. Since the data can be recovered from a degraded state in which the original data are unrecognizable, this technique could be utilized in such applications as image scrambling or encryption.

© 2009 Optical Society of America

OCIS Codes
(160.3730) Materials : Lithium niobate
(160.5320) Materials : Photorefractive materials
(190.5330) Nonlinear optics : Photorefractive optics
(210.4770) Optical data storage : Optical recording

ToC Category:
Nonlinear Optics

History
Original Manuscript: April 29, 2009
Revised Manuscript: July 24, 2009
Manuscript Accepted: July 24, 2009
Published: August 11, 2009

Citation
Daniel Sando, Esa Jaatinen, and Fabrice Devaux, "Reversal of degradation of information masks in lithium niobate," Appl. Opt. 48, 4676-4682 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-24-4676


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. I. Stegeman and C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58, R57-R78 (1985). [CrossRef]
  2. F. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915-917 (1993). [CrossRef] [PubMed]
  3. M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095-3100 (1995). [CrossRef] [PubMed]
  4. O. Matoba, K. Itoh, and K. Kuroda, “Photorefractive optics in dynamic interconnection,” Proc. IEEE 87, 2030-2049 (1999). [CrossRef]
  5. V. Coda, M. Chauvet, F. Pettazzi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett. 42, 463-465 (2006). [CrossRef]
  6. S. Kawata, “Photorefractive optics in three-dimensional digital memory,” Proc. IEEE 87, 2009-2020 (1999). [CrossRef]
  7. D. Staebler, W. Burke, W. Phillips, and J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182-184 (1975). [CrossRef]
  8. Q. W. Song, C.-P. Zhang, and P. J. Talbot, “Self-defocusing, self-focusing, and speckle in LiNbO3 and LiNbO3:Fe crystals,” Appl. Opt. 32, 7266-7271 (1993). [CrossRef] [PubMed]
  9. G. C.Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, “Dark and bright photovoltaic solitons,” Phys. Rev. A 50, R4457-R4460 (1994). [CrossRef] [PubMed]
  10. E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004). [CrossRef]
  11. S. Juodkazis, V. Mizeikis, M. Sudzius, H. Misawa, K. Kitamura, S. Takekawa, E. G. Gamaly, W. Z. Krolikowski, and A. V. Rode, “Laser induced memory bits in photorefractive LiNbO3 and LiTaO3,” Appl. Phys. A 93, 129-133(2008). [CrossRef]
  12. Y. Gao, S. Liu, Z. Liu, and T. Song, “Transmission of digital images consisting of white-light dark solitons,” Appl. Opt. 44, 6948-6951 (2005). [CrossRef] [PubMed]
  13. H. D. Wen, S. M. Liu, X. Z. Zhang, R. Guo, G. Q. Zhang, Q. Sun, J. J. Xu, and G. Y. Zhang, “Photorefractive phase mask,” Proc. SPIE 4277, 303-310 (2001). [CrossRef]
  14. P. Günter and J. Huignard, eds., Photorefractive Effects and Applications (Springer-Verlag, 1988).
  15. D. Psaltis, F. Mok, and H.-Y. Li, “Nonvolatile storage in photorefractive crystals,” Opt. Lett. 19, 210-212 (1994). [CrossRef] [PubMed]
  16. P. Yeh, ed., Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).
  17. F. Devaux, V. Coda, M. Chauvet, and R. Passier, “New time-dependent photorefractive three-dimensional model: application to self-trapped beam with large bending,” J. Opt. Soc. Am. B 25, 1081-1086 (2008). [CrossRef]
  18. F. Devaux and M. Chauvet, “Three-dimensional numerical model of the dynamics of photorefractive beam self-focusing in InP:Fe,” Phys. Rev. A 79, 033823 (2009). [CrossRef]
  19. C. Johnson, ed., Matrix Theory and Applications (American Mathematical Society, 1990).
  20. Y. Gao, S. Liu, X. Zhang, and Y. Lu, “White-light photorefractive phase mask,” Appl. Opt. 44, 1533-1537(2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited