OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 24 — Aug. 20, 2009
  • pp: 4713–4722

Generalized spatial filtering velocimetry and accelerometry for uniform and nonuniform objects

Stanley Pau and William J. Dallas  »View Author Affiliations

Applied Optics, Vol. 48, Issue 24, pp. 4713-4722 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (785 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a technique to measure velocity, acceleration, and higher order derivatives of motion using periodic and nonperiodic spatial filters. The technique can be applied using a single detector or an array of detectors. In one configuration, the velocity distribution of an object such as a fluid can be measured by imaging the object onto an array of detectors. In another configuration, multiple projections of an object are used to reconstruct a cross-sectional velocity distribution using a tomography algorithm. The advantages and disadvantages of our technique applied to uniform and spatially varying motions are described.

© 2009 Optical Society of America

OCIS Codes
(120.7250) Instrumentation, measurement, and metrology : Velocimetry
(170.3340) Medical optics and biotechnology : Laser Doppler velocimetry
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.7250) Remote sensing and sensors : Velocimetry

ToC Category:
Remote Sensing and Sensors

Original Manuscript: May 28, 2009
Revised Manuscript: July 21, 2009
Manuscript Accepted: July 22, 2009
Published: August 12, 2009

Stanley Pau and William J. Dallas, "Generalized spatial filtering velocimetry and accelerometry for uniform and nonuniform objects," Appl. Opt. 48, 4713-4722 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. T. Ator, “Image-velocity sensing with parallel-slit reticles,” J. Opt. Soc. Am. 53, 1416-1419 (1963). [CrossRef]
  2. J. T. Ator, “Image velocity sensing by optical correlation,” Appl. Opt. 5, 1325-1331 (1966). [CrossRef] [PubMed]
  3. Y. Aizu and T. Asakura, “Principles and development of spatial filtering velocimetry,” Appl. Phys. B 43, 209-224 (1987). [CrossRef]
  4. Y. Aizu and T. Asakura, Spatial Filtering Velocimetry, Fundamentals and Applications (Springer, 2006).
  5. K. Christofori and K. Michel, “Velocimetry with spatial filters based on sensor arrays,” Flow Meas. Instrum. 7, 265-272(1996). [CrossRef]
  6. M. L. Jakobsen and S. G. Hanson, “Lenticular array for spatial filtering velocimetry of laser speckles from solid surfaces,” Appl. Opt. 43, 4643-4651 (2004). [CrossRef] [PubMed]
  7. M. L. Jakobsen, H. E. Larsen, and S. G. Hanson, “Optical spatial filtering velocimetry sensor for sub-micron, in-plane vibration measurements,” J. Opt. A: Pure Appl. Opt. 7, S303-S307 (2005). [CrossRef]
  8. D. V. Semenov, E. Nippolainen, and A. A. Kamshilin, “Accuracy and resolution of a dynamic-speckle profilometer,” Appl. Opt. 45, 411-418 (2006). [CrossRef] [PubMed]
  9. T. Ushizaka and T. Asakura, “Measurements of flow velocity in a microscopic region using a transmission grating,” Appl. Opt. 22, 1870-1874 (1983). [CrossRef] [PubMed]
  10. O. Fiedler, J. Werther, N. Labahn, J. Kumpart, and K. Christofori, “Measurement of local particle velocities and velocity distributions in gas-solid flows by means of the spatial filter method,” Powder Technol. 94, 51-57 (1997). [CrossRef]
  11. M. S. Uddin, H. Inaba, Y. Itakura, Y. Yoshida, and M. Kasahara, “Adaptive computer-based spatial-filtering method for more accurate estimation of the surface velocity of debris flow,” Appl. Opt. 38, 6714-6721 (1999). [CrossRef]
  12. P. Reinicke and J. Meyer-ter-Vehn, “The point explosion with heat conduction,” Phys. Fluids A 3, 1807-1818 (1991). [CrossRef]
  13. S. Kim and S. J. Lee, “Effect of particle number density in in-line digital holographic particle velocimetry,” Exp. Fluids 44, 623-631 (2008). [CrossRef]
  14. M. P. Wernet, “Symmetric phase only filtering: a new paradigm for DPIV data processing,” Meas. Sci. Technol. 16, 601-618 (2005). [CrossRef]
  15. F. Kato and I. Shimizu, “Optical processing of particle tracking velocimetry under deformed double exposure,” Meas. Sci. Technol. 11, 646-654 (2000). [CrossRef]
  16. K. T. Christensen and R. J. Adrian, “Measurement of instantaneous Eulerian acceleration fields by particle image accelerometry: method and accuracy,” Exp. Fluids 33, 759-769(2002).
  17. X. Liu and J. Katz, “Instantaneous pressure and material acceleration measurements using a four-exposure PIV system,” Exp. Fluids 41, 227-240 (2006). [CrossRef]
  18. S. Rothberg, A. Hocknell, and J. Coupland, “Developments in laser Doppler accelerometry (LDAc) and comparison with laser Doppler velocimetry,” Opt. Lasers Eng. 32, 549-564 (2000). [CrossRef]
  19. H. Ogiwara and H. Ukita, “A speckle pattern velocimeter using a periodical differential detector,” Jpn. J. Appl. Phys. 14, 307-310 (1975).
  20. S. Bergeler and H. Krambeer, “Novel optical spatial filtering methods based on two-dimensional photodetector arrays,” Meas. Sci. Technol. 15, 1309-1315 (2004). [CrossRef]
  21. M. L. Jakobsen, D. Harvey, and C. A. Greated, “Particle image velocimetry for predictions of acceleration fields and force within fluid flows,” Meas. Sci. Technol. 8, 1502-15161502 (1997). [CrossRef]
  22. A. Jensen, J. K. Sveen, J. Grue, J. B. Richon, and C. Gray, “Accelerations in water waves by extended particle image velocimetry,” Exp. Fluids 30, 500-510 (2001). [CrossRef]
  23. W. F. Hughes and J. A. Brighton, Fluidic Dynamics, 3rd ed. (McGraw Hill, 1999), p. 137.
  24. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, 1988).
  25. H. H. Barrett, “The Radon transform and its applications,” Prog. Opt. 21, 217-286 (2006). [CrossRef]
  26. M. Kachelriess and W. A. Kalender, “Presampling, algorithm factors, and noise: consideration for CT in particular and for medical imaging in general,” Med. Phys. 32, 1321-1334 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited