OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 24 — Aug. 20, 2009
  • pp: 4735–4742

Feasibility study of imaging spectroscopy to monitor the quality of online welding

Jesús Mirapeix, P. Beatriz García-Allende, Adolfo Cobo, Olga M. Conde, and José M. López-Higuera  »View Author Affiliations


Applied Optics, Vol. 48, Issue 24, pp. 4735-4742 (2009)
http://dx.doi.org/10.1364/AO.48.004735


View Full Text Article

Enhanced HTML    Acrobat PDF (1058 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An online welding quality system based on the use of imaging spectroscopy is proposed and discussed. Plasma optical spectroscopy has already been successfully applied in this context by establishing a direct correlation between some spectroscopic parameters, e.g., the plasma electronic temperature and the resulting seam quality. Given that the use of the so-called hyperspectral devices provides both spatial and spectral information, we propose their use for the particular case of arc welding quality monitoring in an attempt to determine whether this technique would be suitable for this industrial situation. Experimental welding tests are presented, and the ability of the proposed solution to identify simulated defects is proved. Detailed spatial analyses suggest that this additional dimension can be used to improve the performance of the entire system.

© 2009 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.4630) Instrumentation, measurement, and metrology : Optical inspection
(300.2140) Spectroscopy : Emission
(350.3850) Other areas of optics : Materials processing

ToC Category:
Spectroscopy

History
Original Manuscript: September 26, 2008
Revised Manuscript: July 17, 2009
Manuscript Accepted: July 29, 2009
Published: August 13, 2009

Citation
Jesús Mirapeix, P. Beatriz García-Allende, Adolfo Cobo, Olga M. Conde, and José M. López-Higuera, "Feasibility study of imaging spectroscopy to monitor the quality of online welding," Appl. Opt. 48, 4735-4742 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-24-4735


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Müller, E. Rohde, J. Beuthan, K. Dörschel, U. Bindig, and H. G. Eberle, “Optoelectronic diagnostics in biomedical engineering,” Laser Phys. 13, 196-206 (2003).
  2. W. B. Grant, R. H. Kagann, and W. A. McClenny, “Optical remote measurement of toxic gases,” J. Air Waste Manage. Assoc. 42, 18-30 (1992). [PubMed]
  3. V. Wagner, D. Drews, N. Esser, D. R. T. Zahn, J. Geurts, and W. Richter, “Raman monitoring of semiconductor growth,” J. Appl. Phys. 75, 7330-7333 (1994). [CrossRef]
  4. P. Vandenabeele, H. G. M. Vandenabeele, and L. Moens, “A decade of Raman spectroscopy in art and archaeology,” Chem. Rev. 107, 675-686 (2007). [CrossRef] [PubMed]
  5. B. A. Weinstock, J. Janni, L. Hagen, and S. Wright “Prediction of oil and oleic acid concentrations in individual corn (Zea mays L.) kernels using near-infrared reflectance hyperspectral imaging and multivariate analysis,” Appl. Spectrosc. 60, 9-16 (2006). [CrossRef] [PubMed]
  6. K. C. Lawrence, W. R. Windham, B. Park, D. P. Smith, and G. H. Poole, “Comparison between visible/NIR spectroscopy and hyperspectral imaging for detecting surface contaminants on poultry carcasses,” Proc. SPIE 5271, 35-42 (2004). [CrossRef]
  7. A. Plaza, D. Valencia, and J. Plaza, “An experimental comparison of parallel algorithms for hyperspectral analysis using heterogeneous and homogeneous networks of workstations,” Parallel Comput. 34, 92-114 (2008). [CrossRef]
  8. B. Park, K. C. Lawrence, W. R. Windham, D. P. Smith, and P. W. Feldner, “Hyperspectral imaging for food processing automation,” Proc. SPIE 4816, 308-316 (2002). [CrossRef]
  9. P. B. Garcia-Allende, O. M. Conde, J. Mirapeix, A. Cobo, and J. M. Lopez-Higuera, “Quality control of industrial processes by combining a hyperspectral sensor and Fisher's linear discriminant analysis,” Sens. Actuators B 129, 977-984(2008). [CrossRef]
  10. L. Grad, J. Grum, I. Polajnar, and J. M. Slabe, “Feasibility study of acoustic signals for on-line monitoring in short circuit gas metal arc welding,” Int. J. Mach. Tools Manuf. 44, 555-561 (2004). [CrossRef]
  11. G. J. Zhang, Z. H. Yan, and L. Wu, “Visual sensing of weld pool in variable polarity TIG welding of aluminium alloy,” Trans. Nonferr. Met. Soc. China 16, 522-526 (1997). [CrossRef]
  12. A. Al-Habaibeh and R. Parkin, “An autonomous low-cost infrared system for the on-line monitoring of manufacturing processes using novelty detection,” Int. J. Adv. Manuf. Technol. 22, 249-258 (2003). [CrossRef]
  13. A. Ancona, V. Spagnolo, P. M. Lugara, and M. Ferrara, “Optical sensor for real-time monitoring of CO2 laser welding process,” Appl. Opt. 40, 6019-6025 (2001). [CrossRef]
  14. P. Sforza and D. de Blasiis, “On-line optical monitoring system for arc welding,” NDT & E Int. 35, 37-43 (2002). [CrossRef]
  15. H. R. Griem, “Validity of local thermal equilibrium in plasma spectroscopy,” Phys. Rev. 131, 1170-1176 (1963). [CrossRef]
  16. G. N. Haddad and A. J. D. Farmer, “Temperature determinations in a free-burning arc: 1. Experimental techniques and results in argon,” J. Phys. D 17, 1189-1196 (1984). [CrossRef]
  17. G. N. Haddad, A. J. D. Farmer, P. Kovitya, and L. E. Cram, “Physical processes in gas-tungsten arcs,” IEEE Trans. Plasma Sci. 14, 333-336 (1986). [CrossRef]
  18. J. F. Bott, “Spectroscopic measurement of temperatures in an argon plasma arc,” Phys. Fluids 9, 1540-1547 (1966). [CrossRef]
  19. A. Marotta, “Determination of axial thermal plasma temperatures without Abel inversion,” J. Phys. D 27, 268-272(1993). [CrossRef]
  20. J. Mirapeix, A. Cobo, C. Jaúregui, and J. M. López-Higuera, “Fast algorithm for spectral processing with application to on-line welding quality assurance,” Meas. Sci. Technol. 17, 2623-2629 (2006). [CrossRef]
  21. J. Mirapeix, A. Cobo, S. Fernandez, R. Cardoso, and J. M. Lopez-Higuera, “Spectroscopic analysis of the plasma continuum radiation for on-line arc-welding defect detection,” J. Phys. D 41, 135202 (2008). [CrossRef]
  22. J. Mirapeix, A. Cobo, A. Quintela, and J. M. Lopez-Higuera, “Embedded spectroscopic fiber sensor for on-line arc-welding analysis,” Appl. Opt. 46, 3215-3220 (2007). [CrossRef] [PubMed]
  23. J. A. Aguilera and C. Aragon, “Characterization of a laser-induced plasma by spatially resolved spectroscopy of neutral atom and ion emissions. Comparison of local and spatially integrated measurements,” Spectrochim. Acta Part B 59, 1861-1876 (2004). [CrossRef]
  24. T. Vaarala, M. Aikio, and H. Keraenen, “An advanced prism-grating-prism imaging spectrograph in on-line industrial applications,” Proc. SPIE 3101, 322-330 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited