OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 24 — Aug. 20, 2009
  • pp: 4774–4784

Fringe projection with a sinusoidal phase grating

Elena Stoykova, Georgi Minchev, and Ventseslav Sainov  »View Author Affiliations

Applied Optics, Vol. 48, Issue 24, pp. 4774-4784 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1365 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Phase-shifting profilometry requires projection of sinusoidal fringes on a 3D object. We analyze the visibility and frequency content of fringes created by a sinusoidal phase grating at coherent illumination. We derive an expression for the intensity of fringes in the Fresnel zone and measure their visibility and frequency content for a grating that has been interferometrically recorded on a holographic plate. Both evaluation of the systematic errors due to the presence of higher harmonics by simulation of a profilometric measurement and measurement of 3D coordinates of test objects confirm the good performance of the sinusoidal phase grating as a projective element. In addition, we prove theoretically that in comparison with a sinusoidal amplitude grating this grating produces better quality of fringes in the near-infrared region. Sinusoidal phase gratings are fabricated easily, and their implementation in fringe projection profilometry facilitates construction of portable, small size, and low-cost devices.

© 2009 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.1960) Diffraction and gratings : Diffraction theory
(050.5080) Diffraction and gratings : Phase shift
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(100.2650) Image processing : Fringe analysis

ToC Category:
Diffraction and Gratings

Original Manuscript: February 17, 2009
Revised Manuscript: June 27, 2009
Manuscript Accepted: August 3, 2009
Published: August 18, 2009

Elena Stoykova, Georgi Minchev, and Ventseslav Sainov, "Fringe projection with a sinusoidal phase grating," Appl. Opt. 48, 4774-4784 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Gasvik, Optical Metrology (Wiley, 2002).
  2. F. Chen, G. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10-22 (2000).
  3. B. Dorrio and J. Fernandez, “Phase-evaluation methods in whole-field optical measurement techniques,” Meas. Sci. Technol. 10, R33-R55 (1999). [CrossRef]
  4. E. Stoykova, J. Harizanova, and V. Sainov, “Pattern projection profilometry for 3D coordinates measurement of dynamic scenes,” in Three Dimensional Television, H. M. Ozaktas and L. Onural, eds. (Springer, 2008), pp. 85-164.
  5. K. Creath, “Phase-measurement interferometry techniques,” Prog. Opt. 26, 349-393 (1988). [CrossRef]
  6. J. Schwider, “Advanced evaluation techniques in interferometry,” Prog. Opt. 28, 271-359 (1990). [CrossRef]
  7. G. Lai and T. Yatagai, “Generalized phase-shifting interferometry,” J. Opt. Soc. Am. A 8, 822-827 (1991). [CrossRef]
  8. A. Patil and P. Rastogi, “Approaches in generalized phase shifting interferometry,” Opt. Lasers Eng. 43, 475-490(2005).
  9. Y. Surrel, “Design of algorithms for phase measurements by the use of phase stepping,” Appl. Opt. 35, 51-60(1996). [CrossRef]
  10. K. G. Larkin and B. F. Oreb, “Design and assessment of symmetrical phase-shifting algorithms,” J. Opt. Soc. Am. A 9, 1740-1748 (1992). [CrossRef]
  11. K. Hibino, B. Oreb, D. Farrant, and K. Larkin, “Phase-shifting algorithms for nonlinear and spatially nonuniform phase shifts,” J. Opt. Soc. Am. A 14, 918-930 (1997). [CrossRef]
  12. S. Yoneyama, Y. Morimoto, M. Fujigaki, and Y. Ikeda, “Three-dimensional surface profile measurement of a moving object by a spatial-offset phase stepping method,” Opt. Eng. 42, 137-142 (2003).
  13. T. Anna, S. K. Dubey, C. Shakher, A. Roy, and D. S. Mehta, “Sinusoidal fringe projection system based on compact and non-mechanical scanning low coherence Michelson interferometer for three-dimensional shape measurement,” Opt. Commun. 282, 1237-1242 (2009). [CrossRef]
  14. D. S. Mehta, S. K. Dubey, M. M. Hossain, and C. Shakher, “Simple multifrequency and phase-shifting fringe-projection system based on two-wavelength lateral shearing interferometry for three-dimensional profilometry,” Appl. Opt. 44, 7515-7521 (2005). [CrossRef]
  15. X. Peng, J. Tian, P. Zhang, L. Wei, W. Qiu, E. Li, and D. Zhang, “Three-dimensional vision with dual acousto-optic deflection encoding,” Opt. Lett. 30, 1965-1967 (2005). [CrossRef]
  16. C. Quan, X. Y. He, C. F. Wang, C. J. Tay, and H. M. Shang, “Shape measurement of small objects using LCD fringe projection with phase-shifting,” Opt. Commun. 189, 21-29 (2001). [CrossRef]
  17. C. Quan, C. J. Tay, X. Kang, X. Y. He, and H. M. Shang, “Shape measurement by use of liquid-crystal display fringe projection with two-step phase shifting,” Appl. Opt. 42, 2329-2335(2003). [CrossRef]
  18. P. S. Huang, C. Zhang, and F.-P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42, 163-168 (2003).
  19. Y. Hao, Y. Zhao, and D. Li, “Multifrequency grating projection profilometry based on the nonlinear excess fraction method,” Appl. Opt. 38, 4106-4111 (1999). [CrossRef]
  20. C. Tay, M. Thakur, and C. Quan, “Grating projection system for surface contour measurement,” Appl. Opt. 44, 1393-1400(2005). [CrossRef]
  21. X. Su, W.-S. Zhou, G. von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94, 561-573 (1992). [CrossRef]
  22. T. Xian and X. Su, “Area modulation grating for sinusoidal structure illumination on phase-measuring profilometry,” Appl. Opt. 40, 1201-1206 (2001). [CrossRef]
  23. H. Guo, H. He, and M. Chen, “Gamma correction for digital fringe projection profilometry,” Appl. Opt. 43, 2906-2914(2004). [CrossRef]
  24. J. Harizanova and A. Kolev, “Comparative study of fringe generation in two-spacing phase-shifting profilometry,” Proc. SPIE 6252, 625223 (2005).
  25. K. A. Stetson and W. R. Brohinsky, “Electrooptic holography and its application to hologram interferometry,” Appl. Opt. 24, 3631-3637 (1985). [CrossRef]
  26. R. Langoju, A. Patil, and P. Rastogi, “Phase-shifting interferometry in the presence of nonlinear phase steps, harmonics and noise,” Opt. Lett. 31, 1058-1060 (2006). [CrossRef]
  27. Y. Hu, J. Xi, E. Li, J. Chicharo, and Z. Yang, “Three-dimensional profilometry based on shift estimation of projected fringe patterns,” Appl. Opt. 45, 678-687 (2006). [CrossRef]
  28. B. F. Oreb and R. G. Dorsch, “Profilometry by phase-shifted Talbot images,” Appl. Opt. 33, 7955-7962 (1994). [CrossRef]
  29. K. G. Harding and S. L. Cartwright, “Phase grating use in moire interferometry,” Appl. Opt. 23, 1517-1520 (1984). [CrossRef]
  30. D. Joyeux and Y. Cohen-Sabban, “High magnification self-imaging,” Appl. Opt. 21, 625-627 (1982). [CrossRef]
  31. L. Liu, “Talbot and Lau effects on incident beams of arbitrary wavefront, and their use,” Appl. Opt. 28, 4668-4678(1989). [CrossRef]
  32. P. Chavel and T. C. Strand, “Range measurement using Talbot diffraction imaging of gratings,” Appl. Opt. 23, 862-871(1984). [CrossRef]
  33. A. W. Lohmann and J. A. Thomas, “Making an array illuminator based on the Talbot effect,” Appl. Opt. 29, 4337-4340(1990). [CrossRef]
  34. M. T. Flores-Arias, M. V. Perez, C. Gomez-Reino, C. Bao, and C. R. Fernandez-Pousa, “Talbot effect interpreted by number theory,” J. Opt. Soc. Am. A 18, 2707-2716 (2001). [CrossRef]
  35. S. Teng, L. Liu, J. Zu, Z. Luan, and D. Liu, “Uniform theory of the Talbot effect with partially coherent light illumination,” J. Opt. Soc. Am. A 20, 1747-1754 (2003). [CrossRef]
  36. P. Latimer and R. F. Crouse, “Talbot effect reinterpreted,” Appl. Opt. 31, 80-89 (1992). [CrossRef]
  37. S. Teng, X. Chen, T. Zhou, and C. Cheng, “Quasi-Talbot effect of a grating in the deep Fresnel diffraction region,” J. Opt. Soc. Am. A 24, 1656-1665 (2007). [CrossRef]
  38. M. Testorf and J. Jahns, “Planar-integrated Talbot array illuminators,” Appl. Opt. 37, 5399-5407 (1998). [CrossRef]
  39. S. K. Dubey, D. S. Mehta, A. Roy, and C. Shakher, “Wavelength scanning Talbot effect: Wavelength-scanning Talbot effect and its application for arbitrary threedimensional step-height measurement,” Opt. Commun. 279, 13-19(2007). [CrossRef]
  40. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  41. E. Stoykova, J. Harizanova, and V. Sainov, “Pattern projection with a sinusoidal phase grating,” EURASIP J. Adv. Signal Process. 2009, 351626 (2009).
  42. K. Patorski and S. Kozak, “Self-imaging with nonparabolic approximation of spherical wave fronts,” J. Opt. Soc. Am. A 5, 1322-1327 (1988). [CrossRef]
  43. D. Ghiglia and M. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms and Software (Wiley, 1998).
  44. J.-C. Terrillon, “Image preprocessing for rotation-invariant pattern recognition in the presence of signal-dependent noise,” Appl. Opt. 35, 1879-1893 (1996). [CrossRef]
  45. Y. Ishii, “Laser-diode interferometry,” Prog. Opt. 46, 243-309(2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited