OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 24 — Aug. 20, 2009
  • pp: 4794–4800

Split step solution in the iteration of the beam propagation method for analyzing Bragg gratings

Hong Shu  »View Author Affiliations

Applied Optics, Vol. 48, Issue 24, pp. 4794-4800 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (547 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The split step method is applied to the iteration of the beam propagation method for analyzing the reflection of a laser beam by a volume Bragg grating. The application of the split step method is made possible by a way to properly treat the grating coupling terms in the paraxial wave equations. This method is demonstrated to be accurate in addition to efficient and robust. After this modification, the iteration of the beam propagation method is suitable for analyzing finite beams in volume Bragg gratings, for which the grating strength might be large. It is also suitable for analyzing Bragg gratings with nonuniform grating structures.

© 2009 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis
(050.7330) Diffraction and gratings : Volume gratings
(090.7330) Holography : Volume gratings
(050.1755) Diffraction and gratings : Computational electromagnetic methods

ToC Category:
Diffraction and Gratings

Original Manuscript: March 20, 2009
Revised Manuscript: July 20, 2009
Manuscript Accepted: July 21, 2009
Published: August 18, 2009

Hong Shu, "Split step solution in the iteration of the beam propagation method for analyzing Bragg gratings," Appl. Opt. 48, 4794-4800 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).
  2. S. Ahmed and E. N. Glytsis, “Comparison of beam propagation method and rigorous coupled-wave analysis for single and multiplexed volume gratings,” Appl. Opt. 35, 4426-4435 (1996). [CrossRef]
  3. P. Yeh, Optical Waves in Layered Media (Wiley, 2005).
  4. J. E. Hellstrom, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume Bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44, 81-89(2008). [CrossRef]
  5. R. Kashyap, Fiber Bragg Gratings (Academic, 1999), Chap. 4.
  6. M. Yamada and K. Sakuda, “Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach,” Appl. Opt. 26, 3474-3478 (1987). [CrossRef]
  7. S. Huang, M. LeBlanc, M. M. Ohn, and R. M. Measures, “Bragg intragrating structural sensing,” Appl. Opt. 34, 5003-5009 (1995). [CrossRef]
  8. M. Prabhugoud and K. Peters, “Modified transfer matrix formulation for Bragg grating strain sensors,” J. Lightwave Technol. 22, 2302-2309 (2004). [CrossRef]
  9. G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photonics Technol. Lett. 6, 995-997 (1994). [CrossRef]
  10. T. K. Gaylord and M. G. Moharam, “Analysis and application of optical diffraction by gratings,” Proc. IEEE 73, 894-937(1985). [CrossRef]
  11. M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Bragg diffraction of finite beams by thick gratings,” J. Opt. Soc. Am. 70, 300-304 (1980). [CrossRef]
  12. R. S. Chu, J. A. Kong, and T. Tamir, “Diffraction of Gaussian beams by a periodically modulated layer,” J. Opt. Soc. Am. 67, 1555-1561 (1977). [CrossRef]
  13. B. Benlarbi, P. St. J. Russell, and L. Solymar, “Bragg diffraction of finite beams by thick gratings: two rival theories,” Appl. Phys. B 28, 63-72 (1982). [CrossRef]
  14. H. T. Hsieh, W. H. Liu, F. Havermeyer, C. Moser, and D. Psaltis, “Beam-widthdependent filtering properties of strong volume holographic gratings,” Appl. Opt. 45, 3774-3780 (2006). [CrossRef]
  15. H. Shu and M. Bass, “Modeling the reflection of a laser beam by a deformed highly reflective volume Bragg grating,” Appl. Opt. 46, 2930-2938 (2007). [CrossRef]
  16. H. Shu, S. Mokhov, B. Y. Zeldovich, and M. Bass, “More on analyzing the reflection of a laser beam by a deformed highly reflective volume Bragg grating using iteration of the beam propagation method,” Appl. Opt. 48, 22-27 (2009). [CrossRef]
  17. D. Yevick and B. Hermansson, “Split-step finite difference analysis of rib waveguides,” Electron. Lett. 25, 461-462(1989). [CrossRef]
  18. D. Yevick and B. Hermansson, “Efficient beam propagation techniques,” IEEE J. Quantum Electron. 26, 109-112 (1990). [CrossRef]
  19. M. D. Feit and J. A. Fleck, Jr., “Light propagation in graded-index optical fibers,” Appl. Opt. 17, 3990-3998 (1978). [CrossRef]
  20. J. A. Fleck, Jr., J. R. Morris, and M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Applied Physics 10, 129-160 (1976). [CrossRef]
  21. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000). Chap. 7.
  22. W. P. Huang and C. L. Xu, S. T. Chu, and S. K. Chaudhuri, “The finite-difference vector beam propagation method: analysis and assessment,” J. Lightwave Technol. 10, 295-305 (1992). [CrossRef]
  23. H. Shu and M. Bass, “Analysis and optimization of the numerical calculation in the slowly decaying imaginary distance beam propagation method,” J. Lightwave Technol. 26, 3199-3206 (2008). [CrossRef]
  24. J. E. Sipe, L. Poladian, and C. M. de Sterke, “Propagation through nonuniform grating structures,” J. Opt. Soc. Am. A 11, 1307-1320 (1994). [CrossRef]
  25. H. Shu and M. Bass, “Three-dimensional computer model for simulating realistic solid-state lasers,” Appl. Opt. 46, 5687-5697 (2007). [CrossRef]
  26. S. T. Hendow and S. A. Shakir, “Recursive numerical solution for nonlinear wave propagation in fibers and cylindrically symmetric systems,” Appl. Opt. 25, 1759-1764 (1986). [CrossRef]
  27. A. Goldberg, H. M. Schey, and J. L. Schwartz, “Computer-generated motion pictures of one-dimensional quantum-mechanical transmission and reflection phenomena,” Am. J. Phys. 35, 177-186 (1967). [CrossRef]
  28. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in Pascal (Cambridge U. Press, 1989).
  29. H. A. Van Der Vorst, “BI-CGSTAB: a fast and smoothly converging variant of BICG for the solution of nonsymmetric linear systems,” SIAM J. Sci. Statist. Comput. 13, 631-644(1992). [CrossRef]
  30. S. Chi and Q. Guo, “Vector theory of self-focusing of an optical beam in Kerr media,” Opt. Lett. 20, 1598-1600 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited