OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 25 — Sep. 1, 2009
  • pp: 4814–4825

High precision refraction measurements by solar imaging during occultation: results from SOFIE

Larry Gordley, John Burton, Benjamin T. Marshall, Martin McHugh, Lance Deaver, Joel Nelsen, James M. Russell, and Scott Bailey  »View Author Affiliations


Applied Optics, Vol. 48, Issue 25, pp. 4814-4825 (2009)
http://dx.doi.org/10.1364/AO.48.004814


View Full Text Article

Enhanced HTML    Acrobat PDF (1397 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new method for measuring atmospheric refraction angles is presented, with in-orbit measurements demonstrating a precision of ± 0.02   arcsec ( ± 0.1 μrad ). Key advantages of the method are the following: (1) Simultaneous observation of two celestial points during occultation (i.e., top and bottom edges of the solar image) eliminates error from instrument attitude uncertainty. (2) The refraction angle is primarily a normalized difference measurement, causing only scale error, not absolute error. (3) A large number of detector pixels are used in the edge location by fitting to a known edge shape. The resulting refraction angle measurements allow temperature sounding up to the lower mesosphere.

© 2009 Optical Society of America

OCIS Codes
(120.5710) Instrumentation, measurement, and metrology : Refraction
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(280.4991) Remote sensing and sensors : Passive remote sensing
(280.5715) Remote sensing and sensors : Refractivity profiles
(040.6808) Detectors : Thermal (uncooled) IR detectors, arrays and imaging

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: April 13, 2009
Revised Manuscript: August 5, 2009
Manuscript Accepted: August 7, 2009
Published: August 20, 2009

Citation
Larry Gordley, John Burton, Benjamin T. Marshall, Martin McHugh, Lance Deaver, Joel Nelsen, James M. Russell, and Scott Bailey, "High precision refraction measurements by solar imaging during occultation: results from SOFIE," Appl. Opt. 48, 4814-4825 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-25-4814


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. M. Jones, F. F. Fischbach, and J. W. Peterson, “Satellite measurements of atmospheric structure by refraction,” Planet. Space Sci. 9, 351-352 (1962). [CrossRef]
  2. G. M. Grechko, A. S. Gurvich, V. A. Lyakhov, S. A. Savchenko, and S. V. Sokolovskiy, “Results of an investigation of refraction during the third expedition on the Salyut-6 Orbiter,” Izv. Russ. Acad. Sci. Atmos. Oceanic Phys., Engl. Transl. 17, 835-841(1981).
  3. R. L. White, W. E. Tanner, and R. S. Polidan, “Star line-of-sight refraction observations from the orbiting astronomical observatory Copernicus and deduction of stratospheric structure in the tropical region,” J. Geophys. Res. 88, 8535-8542 (1983). [CrossRef]
  4. R. J. Vervack, Jr., J. H. Yee, J. F. Carbary, and F. Morgan, “Atmospheric remote sensing using a combined extinctive and stellar occultation technique. 3. Inversion methods for refraction measurements,” J. Geophys. Res. 107, doi:10.1029/2001JD000796 (2002). [CrossRef]
  5. D. M. Ward and B. M. Herman, “Refractive sounding by use of satellite solar occultation measurements including an assessment of its usefulness to the Stratospheric Aerosol and Gas Experiment Program,” Appl. Opt. 37, 8306-8317(1998). [CrossRef]
  6. E. R. Kursinski, G. A. Hajj, W. I. Bertiger, S. S. Leroy, T. K. Meehan, L. J. Romans, J. T. Schofield, D. J. McCleese, W. G. Melbourne, C. L. Thornton, T. P. Yunck, J. R. Eyre, and R. N. Nagatani, “Initial results of radio occultation observations of Earth's atmosphere using the Global Positioning System,” Science 271, 1107-1110 (1996). [CrossRef]
  7. R. Ware, M. Exner, D. Feng, M. Gorbunov, K. Hardy, B. Herman, Y. Kuo, T. Meehan, W. Melbourne, C. Rocken, W. Schreiner, S. Sokolovsky, F. Solheim, X. Zou, R. Anthes, S. Businger, and K. Trenberth, “GPS sounding of the atmosphere from low Earth orbit: preliminary results,” Bull. Am. Meteorol. Soc. 77, 19-40 (1996). [CrossRef]
  8. K. Hocke, “Inversion of GPS meteorology data,” Ann. Geophys. 15, 443-450 (1997). [CrossRef]
  9. A. K. Steiner, G. Kirchengast, and H. P. Ladreiter, “Inversion, error analysis and validation of GPS/MET occultation data,” Ann. Geophys. 17, 122-138 (1999). [CrossRef]
  10. G. Fjeldbo, A. J. Kliore, and V. R. Eshleman, “The neutral atmosphere of Venus as studied with the Mariner V Radio Occultation Experiments,” Astron. J. 76, 123-140(1971). [CrossRef]
  11. R. A. Phinney and D. C. Anderson, “On the radio occultation method for studying planetary atmospheres,” J. Geophys. Res. 73, 1819-1827 (1968). [CrossRef]
  12. B. Edlen, “The refractive index of air,” Metrologia 2, 71-80(1966). [CrossRef]
  13. P. E. Ciddor and R. J. Hill, “Refractive index of air. 2. Group index,” Appl. Opt. 38, 1663-1667 (1999). [CrossRef]
  14. L. L. Gordley, M. Hervig, C. Fish, J. M. Russell III, S. Bailey, J. Cook, S. Hansen, A. Shumway, G. Paxton, L. Deaver, T. Marshall, J. Burton, B. Magill, C. Brown, E. Thompson, and J. Kemp, “The Solar Occultation For Ice Experiment (SOFIE),” J. Atmos. Solar-Terr. Phys. 71, 300-315, doi:10.1016/j.jastp.2008.07.012 (2009). [CrossRef]
  15. M. A. Whiteley, “Design of a space-borne Sun tracking system.,” M.S. thesis, (Utah State University, 2006).
  16. J. C. Burton, K. W. Miller, and S. K. Park, “Rectangularly and hexagonally sampled imaging system fidelity analysis,” Proc. SPIE 1961, 81-92 (1993). [CrossRef]
  17. S. E. Reichenbach, S. K. Park, and R. Narayanswamy, “Characterizing digital image acquisition devices,” Opt. Eng. 30, 170-177 (1991). [CrossRef]
  18. L. L. Gordley, M. J. McHugh, M. E. Hervig, J. C. Burton, L. Liu, B. E. Magill, and J. M. Russell, “Temperature, pressure and high-fidelity pointing knowledge for solar occultation using 2D focal plane arrays,” Proc. SPIE 5883, 588310 (2005).
  19. A. E. Hedin, “Extension of the MSIS Thermosphere Model into the middle and lower atmosphere,” J. Geophys. Res. 96, 1159-1172 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited