OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 25 — Sep. 1, 2009
  • pp: F24–F30

High-quality-factor filter based on a photonic crystal ring resonator for wavelength division multiplexing applications

Yaw-Dong Wu, Tien-Tsorng Shih, and Jian-Jang Lee  »View Author Affiliations


Applied Optics, Vol. 48, Issue 25, pp. F24-F30 (2009)
http://dx.doi.org/10.1364/AO.48.000F24


View Full Text Article

Enhanced HTML    Acrobat PDF (1831 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the properties of ring resonators that are supported by a two-dimensional photonic crystal waveguide. The proposed structure composed of a photonic crystal ring resonator (PCRR) with four scatters can really function as a wavelength division multiplexer. The significance of the design is that the output waveguide is perpendicular to the ring resonator. We numerically demonstrate that the proposed four-channel PCRR device with 3 × 3 inner dielectric rods can provide a transmission efficiency larger than 92%, a quality factor higher than 3800, and crosstalk of less than 32 dB .

© 2009 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(250.5300) Optoelectronics : Photonic integrated circuits
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Photonic Crystals and Gratings

History
Original Manuscript: February 2, 2009
Revised Manuscript: May 2, 2009
Manuscript Accepted: May 10, 2009
Published: June 8, 2009

Citation
Yaw-Dong Wu, Tien-Tsorng Shih, and Jian-Jang Lee, "High-quality-factor filter based on a photonic crystal ring resonator for wavelength division multiplexing applications," Appl. Opt. 48, F24-F30 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-25-F24


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263-2265 (2004).
  2. D. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post, A. Delage, S. Janz, P. Cheben, J. H. Schmid, and B. Lamontagne, “High bandwidth SOI photonic wire ring resonators using MMI couplers,” Opt. Express 15, 3149-3155 (2007). [CrossRef]
  3. G. Priem, P. Dumon, W. Bogaerts, D. V. Thourhout, G. Morthier, and R. Baets, “Optical bistability and pulsating behaviour in silicon on insulator structures,” Opt. Express 13, 9623-9628 (2005). [CrossRef]
  4. T. Baehr-Jones, M. Hochberg, C. Walker, E. Chan, D. Koshinz, W. Krug, and A. Scherer, “Analysis of the tuning sensitivity of silicon-on-insulator optical ring resonators,” IEEE Photon. Technol. Lett. 23, 4215-4221 (2005).
  5. L. Martinez and M. Lipson, “High confinement suspended micro-ring resonators in silicon-on-insulator,” Opt. Express 14, 6259-6263 (2006). [CrossRef]
  6. L. Y. Mario Desmond, C. S. Lim, and M. K. Chin, “Proposal for an ultranarrow passband using two coupled rings,” IEEE Photon. Technol. Lett. 19, 1688-1690 (2007).
  7. S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid,” IEEE Photon. Technol. Lett. 11, 691-693 (1999).
  8. A. Melloni, R. Costa, P. Monguzzi, and M. Martinelli, “Ring-resonator filters in silicon oxynitride technology for dense wavelength-division multiplexing systems,” Opt. Lett. 28, 1567-1569 (2003). [CrossRef]
  9. S. Y. Cho and R. Soref, “Interferometric microring-resonant 2×2 optical switches,” Opt. Express 16, 13304-13314 (2008). [CrossRef]
  10. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242-246 (2008).
  11. K. Preston, P. Dong, B. Schmidt, and M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92, 151104 (2008). [CrossRef]
  12. Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15, 924-929 (2007). [CrossRef]
  13. T. A. Ibrahim, R. Grover, L. C. Kuo, S. Kanakaraju, L. C. Calhoun, and P. T. Ho, “All-optical AND/NAND logic gates using semiconductor microresonators,” IEEE Photon. Technol. Lett. 15, 1422-1424 (2003).
  14. P. P. Yupapin and W. Suwancharoen, “Chaotic signal generation and cancellation using a micro ring resonator incorporating an optical add/drop multiplexer,” Opt. Commun. 280, 343-350 (2007). [CrossRef]
  15. T. Barwicz, M. A. Popovic, P. T. Rakich, M. R. Watts, H. A. Haus, E. P. Ippen, and H. I. Smith, “Microring-resonator-based add-drop filters in SiN: fabrication and analysis,” Opt. Express 12, 1437-1442 (2004). [CrossRef]
  16. Z. Qiang, W. Zhou, and R. A. Soref, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express 15, 1823-1831 (2007). [CrossRef]
  17. Y. D. Wu, J. J. Lee, T. T. Shih, and J. W. Chien, “A high quality factor filter based on quasi-ring resonator design in two-dimensional photonic crystal,” in Asia Optical Fiber Communication and Optoelectronic Exposition and Conference (AOE), 2008 OSA Technical Digest Series (Optical Society of America, 2008), paper SuD2.
  18. K. Ogusu and K. Takayama, “Optical bistability in photonic crystal microrings with nonlinear dielectric materials,” Opt. Express 16, 14780-14791 (2008). [CrossRef]
  19. J. R. Vivas, D. N. Chigrin, A. V. Lavrinenko, and C. M. S. Torres, “Resonant add-drop filter based on a photonic quasicrystal,” Opt. Express 13, 826-835 (2005). [CrossRef]
  20. P. T. Lee, T. W. Lu, C. M. Yu, and C. C. Tseng, “Photonic crystal circular-shaped microcavity and its uniform cavity-waveguide coupling property due to presence of whispering gallery mode,” Opt. Express 15, 9450-9457 (2007). [CrossRef]
  21. S. H. Jeong, N. Yamamoto, J. I. Sugisaka, M. Okano, and K. Komori, “GaAs-based two-dimensional photonic crystal slab ring resonator consisting of a directional coupler and bent waveguides,” J. Opt. Soc. Am. B 24, 1951-1959 (2007). [CrossRef]
  22. W. Y. Chiu, T. W. Huang, Y. H. Wu, Y. J. Chan, C. H. Hou, H. T. Chien, and C. C. Chen, “A photonic crystal ring resonator formed by SOI nano-rods,” Opt. Express 15, 15500-15506(2007). [CrossRef]
  23. M. Djavid, A. Ghaffari, and M. S. Abrishamian, “Coupled-mode analysis of photonic crystal add-drop filters based on ring resonators,” J. Opt. Soc. Am. B 25, 1829-1832 (2008). [CrossRef]
  24. F. Monifi, A. Ghaffari, M. Djavid, and M. S. Abrishamian, “Three output port channel-drop filter based on photonic crystals,” Appl. Opt. 48, 804-809 (2009). [CrossRef]
  25. S. H. Kim and J. S. Kim, “Two-dimensional photonic crystal hexagonal waveguide ring laser,” Appl. Phys. Lett. 81, 2499-2501 (2002). [CrossRef]
  26. A. R. Alija, L. J. Martinez, P. A. Postigo, C. Seassal, and P. Viktorovitch, “Coupled cavity two dimensional photonic crystal waveguide ring laser,” Appl. Phys. Lett. 89, 101102(2006). [CrossRef]
  27. A. Shinya, S. Mitsugi, E. Kuramochi, and M. Notomi, “Ultrasmall multichannel resonant-tunneling filter using mode gap of width-tuned photonic-crystal waveguide,” Opt. Express 13, 4202-4209 (2005). [CrossRef]
  28. H. Ren, C. Jiang, W. Hu, M. Gao, and J. Wang, “Photonic crystal channel drop filter with a wavelength-selective reflection micro-cavity,” Opt. Express 14, 2446-2458 (2006). [CrossRef]
  29. Y. D. Wu, K. W. Hsu, and T. T. Shih, “Thirty-two-channels dense-wavelength-division multiplexer based on cascade two-dimensional photonic crystals waveguide structure,” J. Opt. Soc. Am. B 24, 2075-2080 (2007). [CrossRef]
  30. C. W. Kuo, C. F. Chang, M. H. Chen, S. Y. Chen, and Y. D. Wu, “A new approach of planar multi-channel wavelength division multiplexing system using asymmetric super-cell photonic crystal structures,” Opt. Express 15, 198-206 (2007). [CrossRef]
  31. Y. D. Wu, K. W. Hsu, T. T. Shih, and J. J. Lee, “New design of four-channel add-drop filters based on double-resonant-cavity photonic crystals,” J. Opt. Soc. Am. B 26, 640-644(2009). [CrossRef]
  32. S. Boscolo, M. Midrio, and C. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 47-53(2002). [CrossRef]
  33. M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,” J. Lightwave Technol. 19, 1970-1975 (2001). [CrossRef]
  34. S. Kuchinsky, V. Y. Golyatin, A. Y. Kutikov, T. P. Pearsall, and D. Nedeljkovic, “Coupling between photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 1349-1352 (2002). [CrossRef]
  35. S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguide,” Opt. Express 11, 2927-2939 (2003).
  36. Y. Zhang and B. Li, “Photonic crystal-based bending waveguides for optical interconnections,” Opt. Express 14, 5723-5732 (2006). [CrossRef]
  37. T. T. Shih, Y. D. Wu, and J. J. Lee, “Proposal for compact optical triplexer filter using 2-D photonic crystals,” IEEE Photon. Technol. Lett. 21, 18-20 (2009).
  38. S. John, “Strong localization of phonics in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489(1987). [CrossRef]
  39. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics electronics,” Phys. Rev. Lett. 58, 2059-2062(1987). [CrossRef]
  40. K. M. Leung and Y. F. Liu, “Photon band structures: the plane-wave method,” Phys. Rev. B 41, 10188-10190 (1990).
  41. V. Dinesh Kumar, T. Srinivas, and A. Selvarajan, “Investigation of ring resonators in photonic crystal circuits,” Photon. Nanostruct. Fundam. Appl. 2, 199-206 (2004). [CrossRef]
  42. A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems,” IEEE Trans. Electromagn. Comp. 22, 191-202(1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited