OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 25 — Sep. 1, 2009
  • pp: F49–F54

Improvement of the light-trapping effect using a subwavelength-structured optical disk

Hsi-Fu Shih, Shang-Jung Hsieh, and Wen-Yih Liao  »View Author Affiliations

Applied Optics, Vol. 48, Issue 25, pp. F49-F54 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1065 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The subwavelength structures formed by data tracks in an optical disk are applied to improve the light-trapping effect for thin-film amorphous silicon (a-Si) solar cell applications. An antireflection coating (ARC) consisting of at least two dielectric layers ( S i O 2 and Zn S S i O 2 ) is designed for the top planar surface of the disk. The a-Si thin-film solar cell layer is deposited below the bottom surface of the disk. Finally, a reflective metal coating is attached to the a-Si layer to fully reflect the incident light and extend the round-trip light path. With the proposed configuration, the reflectance and absorptance can be effectively decreased and enhanced by more than 10% compared with those without ARC and structured surfaces.

© 2009 Optical Society of America

OCIS Codes
(210.4590) Optical data storage : Optical disks
(310.1210) Thin films : Antireflection coatings
(350.6050) Other areas of optics : Solar energy
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
High Speed Compontents and Optical Communications

Original Manuscript: February 3, 2009
Revised Manuscript: May 26, 2009
Manuscript Accepted: May 29, 2009
Published: June 23, 2009

Hsi-Fu Shih, Shang-Jung Hsieh, and Wen-Yih Liao, "Improvement of the light-trapping effect using a subwavelength-structured optical disk," Appl. Opt. 48, F49-F54 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. M. Green and P. Campbell, “Light trapping properties of pyramidally textured and grooved surfaces,” Conference Record, 19th IEEE Photovoltaic Specialists Conference (IEEE, 1987), pp. 912-917.
  2. T. Machida, K. Nakajima, Y. Takeda, S. Tanaka, N. Shibuya, K. Okamoto, T. Nammori, T. Nunoi, and T. Tsuji, “Efficiency improvement in polycrystalline silicon solar cell with grooved surface,” Conference Record, 22nd IEEE Photovoltaic Specialists Conference (2) (IEEE, 1992),, pp. 1033-1034.
  3. S. H. Zaida, D. S. Ruby, and J. M. Gee, “Characterization of random reactive ion etched-textured silicon solar cells,” IEEE Trans. Electron. Devices 48, 1200-1206 (2001). [CrossRef]
  4. N. N. Feng, J. Michel, L. Zeng, J. Liu, C. Y. Hong, L. C. Kimerling, and X. Duan, “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Trans. Electron. Devices 54, 1926-1933 (2007). [CrossRef]
  5. M. Niggemann, M. Glatthaar, P. Lewer, C. Muller, J. Wagner, and A. Gombert, “Functional microprism substrate for organic solar cells,” Thin Solid Films 511-512, 628-633 (2006). [CrossRef]
  6. T. Yagi, Y. Uraoka, and T. Fuyuki, “Ray-trace simulation of light trapping in silicon solar cell with texture structures,” Sol. Energy Mater. Sol. Cells 90, 2647-2656 (2006). [CrossRef]
  7. S. I. Na, S. S. Kim, S. S. Kwon, J. .Jo. J. Kim, T. Lee, and D. Y. Kim, “Surface relief grating on poly (3-hexylthiophene) and fullerene blends for efficient organic solar cells,” Appl. Phys. Lett. 91, 173509 (2007). [CrossRef]
  8. J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, “Thin film silicon solar cell design based on photonic crystal and diffractive grating structures,” Opt. Express 16, 15238-15248 (2008). [CrossRef] [PubMed]
  9. T. Higuchi and H. Koyanagi, “27.4 Gbyte read-only dual-layer disc for blue lasers,” Jpn. J. Appl. Phys. 39, 933-936 (2000). [CrossRef]
  10. E. Muramatsu, A. Shirota, K. Horikawa, M. Kato, S. Taniguchi, and A. Inoue, “Physical characteristics and the format of digital versatile disc-recordable,” Jpn. J. Appl. Phys. 40, 1798-1802 (2001). [CrossRef]
  11. T. Kato, H. Hirata, T. Komaki, H. Inoue, H. Shingai, N. Hayashida, and H. Utsunomiya, “The phase change optical disc with the data recording rate of 140 Mbps,” Jpn. J. Appl. Phys. 41, 1664-1667 (2002). [CrossRef]
  12. Y. Hosoda, T. Higuchi, N. Shida, T. Imai, T. Iida, K. Kuriyama, and F. Yokogawa, “BD-type write-once disk with pollutant-free material and starch substrate,” Jpn. J. Appl. Phys. 44, 3587-3590 (2005). [CrossRef]
  13. A. B. Marchant, Optical Recording: a Technical Overview (Addison-Wesley, 1990).
  14. E. Ohno, K. Hisada, E. Ito, Y. Tomekawa, K. Nishikiori, K. Hayashi, and S. Abe, “Manufacturing process for low cost dual layer blu-ray disc read-only memory media based on the all spin method,” Jpn. J. Appl. Phys. 47, 5509-5515 (2008). [CrossRef]
  15. Product of Software Spectra, Incorporated, http://www.sspectra.com.
  16. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811-818 (1981). [CrossRef]
  17. M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385-1392 (1982). [CrossRef]
  18. Product of Grating Solver Development Company, http://www.gsolver.com.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited