OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 26 — Sep. 10, 2009
  • pp: 4866–4873

Hybrid silica/polymer long period gratings for wavelength filtering and power distribution

Jia Jiang, Claire L. Callender, Julian P. Noad, and Jianfu Ding  »View Author Affiliations


Applied Optics, Vol. 48, Issue 26, pp. 4866-4873 (2009)
http://dx.doi.org/10.1364/AO.48.004866


View Full Text Article

Enhanced HTML    Acrobat PDF (927 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report long period grating (LPG) devices based on a hybrid architecture incorporating photopatternable fluorinated poly(aryl ether ketone) and silica layers for applications in wavelength filtering and power distribution. The grating structure was implemented using a periodic corrugation on a thermally oxidized silica lower cladding layer, a photopatterned fluorinated polymer ridge waveguide, and a simi lar polymer top cladding. In this design, the corrugated silica layer allows a highly stable grating structure, while the fluorinated polymer offers a low propagation loss and easy processability. Strong rejection bands have been demonstrated in the C + L wavelength band, in good agreement with theoretical calculations. The fabricated LPG devices show a thermal dependence of 1.5 nm / ° C . Based on this design, an array of waveguides incorporating LPGs has also been fabricated. Distribution of light at the resonance wavelength across all the channels from a single input has been demonstrated. These results are promising for power distribution in photonic network applications or on-chip sensors.

© 2009 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(220.3740) Optical design and fabrication : Lithography
(230.7390) Optical devices : Waveguides, planar
(230.7408) Optical devices : Wavelength filtering devices
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Diffraction and Gratings

History
Original Manuscript: June 17, 2009
Revised Manuscript: August 17, 2009
Manuscript Accepted: August 17, 2009
Published: September 1, 2009

Citation
Jia Jiang, Claire L. Callender, Julian P. Noad, and Jianfu Ding, "Hybrid silica/polymer long period gratings for wavelength filtering and power distribution," Appl. Opt. 48, 4866-4873 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-26-4866


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65(1996). [CrossRef]
  2. A. P. Zhang, X.-W. Chen, J.-H. Yan, Z.-G. Guan, S. He, and H.-Y. Tam, “Optimization and fabrication of stitched long-period gratings for gain flattening of ultrawide-band EDFAs,” IEEE Photon. Technol. Lett. 17, 2559-2561 (2005). [CrossRef]
  3. M. Das and K. Thyagarajan, “Dispersion compensation in transmission using uniform long period fiber gratings,” Opt. Commun. 190, 159-163 (2001). [CrossRef]
  4. A. P. Zhang, L.-Y. Shao, J.-F. Ding, and S. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photon. Technol. Lett. 17, 2397-2399 (2005). [CrossRef]
  5. D. E. Ceballos-Herrera, I. Torres-Gómez, A. Martínez-Ríos, G. Anzueto-Sánchez, J. A. Álvarez-Chávez, R. Selvas-Aguilar, and J. J. Sánchez-Mondragón, “Ultra-widely tunable long-period holey-fiber grating by the use of mechanical pressure,” Appl. Opt. 46, 307-311 (2007). [CrossRef] [PubMed]
  6. L. Su, K. S. Jiang, and C. Lu, “CO2-laser-induced long-period gratings in graded-index multimode fibers for sensor applications,” IEEE Photon. Technol. Lett. 18, 190-192 (2006). [CrossRef]
  7. S. T. Lee, R. D. Kumar, P. S. Kumar, P. Radhakrishnan, C. P. G. Vallabhan, and V. P. N. Nampoori, “Long period gratings in multi-mode optical fibers: application in chemical sensing,” Opt. Commun. 224, 237-241 (2003). [CrossRef]
  8. K. Wang, D. Klimov, and Z. Kolber, “Seawater pH sensor based on the long period grating in a single-mode-multimode-single-mode structure,” Opt. Eng. 48, 034401 (2009). [CrossRef]
  9. V. Bhatia, D. Campbell, R. O. Claus, and A. M. Vengsarkar, “Simultaneous strain and temperature measurement with long-period gratings,” Opt. Lett. 22, 648-650 (1997). [CrossRef] [PubMed]
  10. P. Lu, D. Grobnic, and S. J. Mihailov, “Characterization of the birefringence in fiber Bragg gratings fabricated with an ultrafast-infrared laser,” J. Lightwave Technol. 25, 779-786(2007). [CrossRef]
  11. V. Grubsky and J. Feinberg, “Fabrication of axially symmetric long-period gratings with a carbon dioxide laser,” IEEE Photon. Technol. Lett. 18, 2296-2298 (2006). [CrossRef]
  12. G. M. Rego, J. L. Santos, and H. M. Salgado, “Refractive index measurement with long-period gratings arc-induced in pure-silica-core fibres,” Opt. Commun. 259, 598-602 (2006). [CrossRef]
  13. L.-Y. Shao, J. Zhao, X. Dong, H. Y. Tam, C. Lu, and S. He, “Long-period grating fabricated by periodically tapering standard single-mode fiber,” Appl. Opt. 47, 1549-1552 (2008). [CrossRef] [PubMed]
  14. N. Chen, B. Yun, and Y. Cui, “Cladding index modulated fiber grating,” Opt. Commun. 259, 587-591 (2006). [CrossRef]
  15. V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305, 74-75(2004). [CrossRef] [PubMed]
  16. V. Rastogi and K. S. Chiang, “Long-period gratings in planar optical waveguides,” Appl. Opt. 41, 6351-6355 (2002). [CrossRef] [PubMed]
  17. Q. Liu, K. S. Chiang, and V. Rastogi, “Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence,” J. Lightwave Technol. 21, 3399-3405 (2003). [CrossRef]
  18. Q. Liu, K. S. Chiang, and K. P. Lor, “Long-period gratings in polymer ridge waveguides,” Opt. Express 13, 1150-1160(2005). [CrossRef] [PubMed]
  19. K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chen, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photon. Technol. Lett. 15, 1094-1096 (2003). [CrossRef]
  20. M.-S. Kwon and S.-Y. Shin, “Refractive index sensitivity measurement of a long-period waveguide grating,” IEEE Photon. Technol. Lett. 17, 1923-1925 (2005). [CrossRef]
  21. A. Perentos, G. Kostovski, and A. Mitchell, “Polymer long-period raised rib waveguide gratings using nano-imprint lithography,” IEEE Photon. Technol. Lett. 17, 2595-2597(2005). [CrossRef]
  22. M.-S. Kwon and S.-Y. Shin, “Tunable notch filter using a thermo-optic long-period grating,” J. Lightwave Technol. 22, 1968-1975 (2004). [CrossRef]
  23. M.-S. Kwon and S.-Y. Shin, “Polymer waveguide notch filter using two stacked thermooptic long period gratings,” IEEE Photon. Technol. Lett. 17, 792-794 (2005). [CrossRef]
  24. Y. Qi, J. Jiang, C. L. Callender, M. Day, and J. Ding, “Cross-linkable bromo-fluorinated poly(arylene ether ketone)s for photonic device applications,” Appl. Opt. 45, 7480-7487(2006). [CrossRef] [PubMed]
  25. J. Jiang, C. L. Callender, J. P. Noad, Y. Qi, J. Ding, and M. Day, “Photopatterning of waveguide devices using fluorinated poly(arylene ether ketone),” Opt. Eng. 46, 074601(2007). [CrossRef]
  26. Y. Bai and K. S. Chiang, “Analysis of long-period waveguide grating arrays,” J. Lightwave Technol. 24, 3856-3863(2006). [CrossRef]
  27. Y. Bai, Q. Liu, K. P. Lor, and K. S. Chiang, “Widely tunable long-period waveguide grating couplers,” Opt. Express 14, 12644-12654 (2006). [CrossRef] [PubMed]
  28. K. S. Chiang, F. Y. M. Chan, and M. N. Ng, “Analysis of two parallel long-period fiber gratings,” J. Lightwave Technol. 22 (5), 1358-1366 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited