OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 26 — Sep. 10, 2009
  • pp: 4899–4903

Resonant-wavelength tuning of a nanocavity by subnanometer control of a two-dimensional silicon-based photonic crystal slab structure

Bong-Shik Song, Takuji Nagashima, Takashi Asano, and Susumu Noda  »View Author Affiliations


Applied Optics, Vol. 48, Issue 26, pp. 4899-4903 (2009)
http://dx.doi.org/10.1364/AO.48.004899


View Full Text Article

Enhanced HTML    Acrobat PDF (702 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate fine tuning of the resonant wavelength of a nanocavity in a two-dimensional silicon-based photonic crystal slab structure by subnanometer control of the airhole diameter and slab thickness. Theoretical investigation shows that the resonant wavelength depends linearly on the latter two parameters. To experimentally demonstrate the fine tuning of the resonant wavelength, we control these parameters through chemical processes. The resonant-wavelength shift is tuned to 3.25 and 0.36 nm by use of two oxidizing processes. The latter shift, which corresponds to a 0.14 nm thick silicon layer, is considerably smaller than shifts achieved in previous studies.

© 2009 Optical Society of America

OCIS Codes
(140.3945) Lasers and laser optics : Microcavities
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(130.5296) Integrated optics : Photonic crystal waveguides
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Diffraction and Gratings

History
Original Manuscript: May 18, 2009
Revised Manuscript: July 29, 2009
Manuscript Accepted: August 9, 2009
Published: September 1, 2009

Citation
Bong-Shik Song, Takuji Nagashima, Takashi Asano, and Susumu Noda, "Resonant-wavelength tuning of a nanocavity by subnanometer control of a two-dimensional silicon-based photonic crystal slab structure," Appl. Opt. 48, 4899-4903 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-26-4899


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944-947 (2003). [CrossRef] [PubMed]
  2. B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane heterophotonic crystals,” Science 300, 1537(2003). [CrossRef] [PubMed]
  3. H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444-1447(2004). [CrossRef] [PubMed]
  4. Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862-865 (2007). [CrossRef] [PubMed]
  5. T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optic nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14, 377-386(2006). [CrossRef] [PubMed]
  6. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896-899 (2007). [CrossRef] [PubMed]
  7. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučkovic, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857-861 (2007). [CrossRef] [PubMed]
  8. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207-210 (2005). [CrossRef]
  9. M. Belotti, J. Galisteo Lòpez, S. D. Angelis, M. Galli, I. Maksymov, L. C. Andreani, D. Peyrade, and Y. Chen, “All-optical switching in 2D silicon photonic crystals with low loss waveguides and optical cavities,” Opt. Express 16, 11624-11636 (2008). [PubMed]
  10. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1, 449-458 (2007). [CrossRef]
  11. Y. Takahashi, Y. H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15, 17206-17213 (2007). [CrossRef] [PubMed]
  12. B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Multi-channel add/drop filter based on in-plane hetero photonic crystals,” J. Lightwave Technol. 23, 1449-1455(2005). [CrossRef]
  13. B. S. Song, T. Nagashima, T. Asano, Y. Akahane, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett. 20, 532-534 (2008). [CrossRef]
  14. Y. Muroya, T. Nakamura, H. Yamada, and T. Torikai, “Precise wavelength control for DFB laser diodes by novel corrugation delineation method,” IEEE Photon. Technol. Lett. 9, 288-290(1997). [CrossRef]
  15. K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hua, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87, 021108 (2005). [CrossRef]
  16. M. Morita, T. Ohmi, E. Hasegawa, and A. Teramoto, “Native oxide growth on silicon surface in ultrapure water and hydrogen peroxide,” Jpn. J. Appl. Phys. 29, 2392-2394 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited