OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 26 — Sep. 10, 2009
  • pp: 4909–4916

Resolving fringe ambiguities of a wide-field Michelson interferometer using visibility measurements of a noncollimated laser beam

Xiaoke Wan, Ji Wang, and Jian Ge  »View Author Affiliations

Applied Optics, Vol. 48, Issue 26, pp. 4909-4916 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (625 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An actively stabilized interferometer with a constant optical path difference is a key element in long-term astronomical observation, and resolving interference fringe ambiguities is important to produce high-precision results for the long term. We report a simple and reliable method of resolving fringe ambiguities of a wide-field Michelson interferometer by measuring the interference visibility of a noncollimated single-frequency laser beam. Theoretical analysis shows that the interference visibility is sensitive to a subfringe phase shift, and a wide range of beam arrangements is suitable for real implementation. In an experimental demonstration, a Michelson interferometer has an optical path difference of 7 mm and a converging monitoring beam has a numerical aperture of 0.045 with an incidental angle of 17 ° . The resolution of visibility measurements corresponds to 1 / 16 fringe in the interferometer phase shift. The fringe ambiguity-free region is extended over a range of 100 fringes.

© 2009 Optical Society of America

OCIS Codes
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.1088) Instrumentation, measurement, and metrology : Adaptive interferometry

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: June 5, 2009
Manuscript Accepted: July 23, 2009
Published: September 1, 2009

Xiaoke Wan, Ji Wang, and Jian Ge, "Resolving fringe ambiguities of a wide-field Michelson interferometer using visibility measurements of a noncollimated laser beam," Appl. Opt. 48, 4909-4916 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. B. Neumann and H. W. Rose, “Improvement of recorded holographic fringes by feedback control,” Appl. Opt. 6, 1097-1104 (1967). [CrossRef] [PubMed]
  2. A. A. Freschi and J. Frejlich, “Adjustable phase control in stabilized interferometry,” Opt. Lett. 20, 635-637 (1995). [CrossRef] [PubMed]
  3. A. J. Moore, R. McBride, J. S. Barton, and J. D. Jones, “Closed-loop phase stepping in a calibrated fiber-optic fringe projector for shape measurement,” Appl. Opt. 41, 3348-3354(2002). [CrossRef] [PubMed]
  4. V. V. Krishnamachari, E. R. Andresen, S. R. Keiding, and E. O. Potma, “An active interferometer-stabilization scheme with linear phase control,” Opt. Express 14, 5210-5215(2006). [CrossRef] [PubMed]
  5. J. Ge, D. J. Erskine, and M. Rushford, “An externally dispersed interferometer for sensitive Doppler extrasolar planet searches,” Publ. Astron. Soc. Pac. 114, 1016-1028(2002). [CrossRef]
  6. J. Ge, J. Van Eyken, S. Mahadevan, C. DeWitt, S. R. Kane, R. Cohen, A. Vanden Heuvel, S. W. Fleming, P. Guo, G. W. Henry, D. P. Schneider, L. W. Ramsey, R. A. Wittenmyer, M. Endl, W. D. Cochran, E. B. Ford, E. L. Martin, G. Israelian, J. Valenti, and D. Montes, “The first extrasolar planet discovered with a new generation high throughput Doppler instrument,” Astrophys. J. 648, 683-695(2006). [CrossRef]
  7. D. J. Erskine and J. Ge, “Novel interferometer-spectrometer for sensitive stellar radial velocimetry,”Astron. Soc. Pac. Conf. Ser. 195, 501-507(2000).
  8. J. Ge, “Fixed delay interferometry for Doppler extrasolar planet detection,” Astrophys. J. 571, L165-L168(2002). [CrossRef]
  9. M. U. Wehner, M. H. Ulm, and M. Wegener, “Scanning interferometer stabilized by use of Pancharatnam's phase,” Opt. Lett. 22, 1455-1457 (1997). [CrossRef]
  10. M. C. Park and S. W. Kim, “Direct quadratic polynomial fitting for fringe peak detection of white light scanning interferograms,” Opt. Eng. 39, 952-959 (2000). [CrossRef]
  11. C. Yang, A. Wax, R. R. Dasari, and M. S. Feld, “2π ambiguity-free optical distance measurement with subnanometer precision with a novel phase-crossing low-coherence interferometer,” Opt. Lett. 27, 77-79 (2002). [CrossRef]
  12. P. De Groot and X. C. De Lega, “Angle-resolved three-dimensional analysis of surface films by coherence scanning interferometry,” Opt. Lett. 32, 1638-1640 (2007). [CrossRef] [PubMed]
  13. P. De Groot, “Three-color laser-diode interferometer,” Appl. Opt. 30, 3612-3616 (1991). [CrossRef] [PubMed]
  14. X. Wan and H. F. Taylor, “Intrinsic fiber Fabry-Perot temperature sensor with fiber Bragg grating mirrors,” Opt. Lett. 27, 1388-1390 (2002). [CrossRef]
  15. R. L. Hilliard and G. G. Shepherd, “Wide-angle Michelson interferometer for measuring Doppler line widths,” J. Opt. Soc. Am. 56, 362-369 (1966). [CrossRef]
  16. G. G. Shepherd, W. A. Gault, D. W. Miller, Z. Pasturczyk, S. F. Johnston, P. R. Kosteniuk, J. W. Haslett, D. J. W. Kendall, and J. R. Wimperis, “WAMDII--wide-angle Michelson Doppler imaging interferometer for Spacelab,” Appl. Opt. 24, 1571-1584 (1985). [CrossRef] [PubMed]
  17. R. C. Youngquist, S. Carr, and D. E. N. Davies, “Optical coherence-domain reflectometry: a new optical evaluation technique,” Opt. Lett. 12, 158-160 (1987). [CrossRef] [PubMed]
  18. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Futimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  19. F. M. Xu, H. E. Pudavar, P. N. Prasad, and D. Dickensheets, “Confocal enhanced optical coherence tomography for nondestructive evaluation of paints and coatings,” Opt. Lett. 24, 1808-1810 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited