OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 26 — Sep. 10, 2009
  • pp: 4917–4921

Crossed-beam intermodulated fluorescence spectroscopy as a spatially resolved temperature diagnostic for supersonic nozzles

Grady T. Phillips and Glen P. Perram  »View Author Affiliations

Applied Optics, Vol. 48, Issue 26, pp. 4917-4921 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (949 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A variant of laser saturation spectroscopy has been applied to the determination of spatially resolved temperature in low-pressure supersonic flows. By copropagating a pump and probe beam with a small crossing angle, the full Doppler profile is retained, but the signal is limited to the volume where both beams are overlapped. The technique was demonstrated on several rovibrational lines of the I 2 X Σ 1 ( 0 g + ) B Π 3 ( 0 u + ) transition in a Mach 2 Laval nozzle. A temperature of 146 K ± 1.5 K was extracted from measurements of the I 2 P ( 46 ) 17-1 spectral line with a spatial resolution of 2.4 mm 3 . Application of the technique to the turbulent gain medium of a chemical oxygen–iodine laser is discussed.

© 2009 Optical Society of America

OCIS Codes
(020.3690) Atomic and molecular physics : Line shapes and shifts
(120.6780) Instrumentation, measurement, and metrology : Temperature
(140.1550) Lasers and laser optics : Chemical lasers
(280.2490) Remote sensing and sensors : Flow diagnostics
(300.6460) Spectroscopy : Spectroscopy, saturation

ToC Category:

Original Manuscript: June 9, 2009
Manuscript Accepted: August 5, 2009
Published: September 1, 2009

Grady T. Phillips and Glen P. Perram, "Crossed-beam intermodulated fluorescence spectroscopy as a spatially resolved temperature diagnostic for supersonic nozzles," Appl. Opt. 48, 4917-4921 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. B. Keating, C. A. Helms, B. T. Anderson, T. L. Rittenhouse, K. A. Truesdell, and G. D. Hager, “Two-dimensional gain and cavity temperature maps of a small-scale supersonic COIL,” in Proceedings of the International Conference on Lasers '96, 194-201, V.J.Corcoran and T.A.Goldman, eds. (STS Press, 1997).
  2. G. P. Perram, “Chemical lasers,” in Wiley Encyclopedia of Electrical and Electronics Engineering, J. G. Webster, ed. (Wiley, 1999), Vol. 3.
  3. V. S. Letokhov and V. P. Chebotayev, Nonlinear Laser Spectroscopy (Springer-Verlag1977).
  4. V. S. Letokhov, “Saturation spectroscopy,” in High-Resolution Laser Spectroscopy, Vol. 13 of Topics in Applied Physics, K. Shimoda, ed. (Springer-Verlag, 1976).
  5. W. Demtroder, Laser Spectroscopy, 3rd ed. (Springer-Verlag, 2003).
  6. G. R. Hanes and C. E. Dahlstrom, “Iodine hyperfine structure observed in saturated absorption at 633 nm,” Appl. Phys. Lett. 14, 362-364 (1969). [CrossRef]
  7. T. W. Hansch, M. D. Levenson, and A. L. Schawlow, “Complete hyperfine structure of molecular iodine line,” Phys. Rev. Lett. 26, 946-949 (1971). [CrossRef]
  8. M. D. Levenson and A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A 6, 10-20 (1972). [CrossRef]
  9. P. Cerez, A. Brillet, and F. Hartmann, “Metrological properties of the R(127) line of iodine studied by laser saturated absorption,” IEEE Trans. Instrum. Meas. 23, 526-528 (1974). [CrossRef]
  10. B. Couillaud and A. Ducasse, “Saturated absorption experiments using a free running CW dye laser,” Opt. Commun. 13, 398-401 (1975). [CrossRef]
  11. S. J. Bennett and P. Cerez, “Hyperfine structure in iodine at the 612 nm and 640 nm helium-neon,” Opt. Commun. , 343-347 (1978). [CrossRef]
  12. S. C. Xu, R. van Dierendonck, W. Hogervorst, and W. Ubachs, “A dense grid of reference iodine lines for optical frequency calibration in the range 595-696 nm,” J. Mol. Spectrosc. 201, 256-266 (2000). [CrossRef] [PubMed]
  13. G. T. Phillips and G. P. Perram, “Pressure broadening by argon in the hyperfine resolved P(10) and P(70) (17,1) transitions of I2XΣ1(0g+)→B3Π(0u+) using sub-Doppler laser saturation spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 109, 1875 (2008). [CrossRef]
  14. M. S. Sorem and A. L. Schawlow, “Saturation spectroscopy in molecular iodine by intermodulated fluorescence,” Opt. Commun. 5, 148-151 (1972). [CrossRef]
  15. M. S. Sorem, T. W. Hansch, and A. L. Schawlow, “Nuclear quadrupole coupling in the 1Σg+ and 3π0u+ states of molecular iodine,” Chem. Phys. Lett. 17, 300-302 (1972). [CrossRef]
  16. H. J. Foth and F. Spieweck, “Hyperfine structure of the R(98), 58-1 line of 127I2 at 514.5 nm,” Chem. Phys. Lett. 65, 347-352(1979). [CrossRef]
  17. J. Vander Linde, C. D. P. Levy, P. Bicchi, and F. W. Dalby, “Polarizability of the B state of I2 from intermodulated fluorescence saturation spectroscopy,” Phys. Rev. A 30, 1325-1330(1984). [CrossRef]
  18. A. G. Astill, A. J. McCaffery, M. J. Proctor, E. A. Sedon, and B. J. Whitaker, “Pressure broadening of the nuclear hyperfine spectrum of 127I2 by He and Xe,” J. Phys. B 18, 3745-3757(1985). [CrossRef]
  19. S. Rakowsky, D. Zimmermann, and W. E. Ernst, “Accurate determination of wavenumbers for iodine molecular lines in the red spectral region,” Appl. Phys. B 48, 463-466 (1989). [CrossRef]
  20. G. T. Phillips, “Spatially resolved temperature diagnostic for supersonic flow using cross-beam Doppler-limited laser saturation spectroscopy,” Ph.D. dissertation (Air Force Institute of Technology, 2006).
  21. R. J. Hartfield, S. D. Hollo, and J. C. McDaniel, “Planar temperature measurement in compressible flows using laser-induced iodine fluorescence,” Opt. Lett. 8, 51-53(1983). [CrossRef]
  22. R. J. Hartfield, S. D. Hollo, and J. C. McDaniel, “Planar measurement technique for compressible flows using laser induced iodine fluorescence,” AIAA J. 31, 483-490 (1993). [CrossRef]
  23. J. E. M. Goldsmith, “Spatially resolved saturated absorption spectroscopy in flames,” Opt. Lett. 6, 525-527 (1981). [CrossRef] [PubMed]
  24. G. Kychakoff, R. D. Howe, and R. K. Hanson, “Spatially resolved combustion measurements using cross-beam saturated absorption spectroscopy,” Appl. Opt. 23, 1303-1305(1984). [CrossRef] [PubMed]
  25. G. Zizak, F. Cignoli, and S. Benecchi, “Spatially resolved saturation absorption measurements of OH in methane-air flames,” Appl. Opt. 26, 4293-4297 (1987). [CrossRef] [PubMed]
  26. T. Van Marter, M. C. Heaven, and D. Plummer, “Measurement of the rate constant for the quenching of I(2P1/2) by O2(X) at 150 K,” Chem. Phys. Lett. 260, 201-207 (1996). [CrossRef]
  27. A. Yokozeki and J. S. Muenter, “Laser fluorescence state selected and detected molecular beam magnetic resonance in I2,” J. Chem. Phys. 72, 3796-3804 (1980). [CrossRef]
  28. D. G. Fletcher and J. C. McDaniel, “Temperature measurement in a compressible flow field using laser-induced iodine fluorescence,” Opt. Lett. 12, 16 (1987). [CrossRef] [PubMed]
  29. E. Hirai, K. Teshima, K. Kurita, and S. Takahara, “Velocity measurements of free jets using nuclear hyperfine structure of I2*,” Jpn. Soc. Mech. Eng. Int. J. B 40, 501 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited