OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 26 — Sep. 10, 2009
  • pp: 4922–4925

Tellurium-enhanced nonresonant third-order optical nonlinearity in a germanosilicate optical fiber

Aoxiang Lin, Xueming Liu, Pramod R. Watekar, Wei Zhao, Bo Peng, Min Lu, Wei Wei, Chuandong Sun, Yishan Wang, Won-Taek Han, and Jean Toulouse  »View Author Affiliations


Applied Optics, Vol. 48, Issue 26, pp. 4922-4925 (2009)
http://dx.doi.org/10.1364/AO.48.004922


View Full Text Article

Enhanced HTML    Acrobat PDF (269 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A tellurium-doped germanosilicate optical fiber was developed by modified chemical vapor deposition and solution doping techniques. Using the continuous-wave self-phase modulation method, the nonresonant nonlinear refractive index, n 2 , was measured to be 5.52 × 10 20 m 2 / W , which is 2 to 3 times that of the undoped germanosilicate glass fiber. Polyhedron structures Te O 3 and Te O 4 with Ge O 4 and Si O 4 are believed responsible for lower phonon energy, more nonbridging oxygens, and a larger hyperpolarization, leading to the observed higher nonresonant optical nonlinearity.

© 2009 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 29, 2009
Manuscript Accepted: August 11, 2009
Published: September 1, 2009

Citation
Aoxiang Lin, Xueming Liu, Pramod R. Watekar, Wei Zhao, Bo Peng, Min Lu, Wei Wei, Chuandong Sun, Yishan Wang, Won-Taek Han, and Jean Toulouse, "Tellurium-enhanced nonresonant third-order optical nonlinearity in a germanosilicate optical fiber," Appl. Opt. 48, 4922-4925 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-26-4922


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. C. Byron, “Kerr modulation of signal at 1.3 and 1.5 μm in polarization-maintaining fiber pumped at 1.08 μm,” Electron. Lett. 23, 1324-1326 (1987). [CrossRef]
  2. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  3. P. Petropoulos, T. M. Monro, H. Ebendorff-Herdepriem, K. Frampton, R. C. Moore, and D. J. Richardson, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express 11, 3658-3573 (2003).
  4. N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W−1·km−1,” in Optical Fiber Communication Conference, 2004 OSA Technical Digest Series (Optical Society of America, 2004), paper PDP26.
  5. K. Kikuchi, K. Taira, and N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing,” Electron. Lett. 38, 166-167 (2002). [CrossRef]
  6. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12, 5082-5087(2004). [CrossRef]
  7. A. Lin, X. Liu, P. R. Watekar, W. Zhao, B. Peng, C. Sun, Y. Wang, and W.-T. Han, “All-optical switching application of germano-silicate optical fiber incorporated with Ag nanocrystals,” Opt. Lett. 34, 791-793 (2009). [CrossRef]
  8. R. Jose, G. Qin, Y. Arai, and Y. Ohishi, “Enhanced nonlinear susceptibility in Te2O─BaO─SrO─Nb2O5 tellurite glasses,” Jpn. J. Appl. Phys. 46, L651-L653 (2007). [CrossRef]
  9. X. Feng, W. H. Loh, J. C. Flanagan, A. Camerlingo, S. Dasgupta, P. Petropoulos, P. Horak, K. E. Frampton, N. M. White, J. H. V. Price, H. N. Rutt, and D. J. Richardson, “Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications,” Opt. Express 16, 13651-13656 (2008). [CrossRef]
  10. J. Wang, S. Prasad, K. Kiang, R. K. Pattnaik, J. Toulouse, and H. Jain, “Source of optical loss in tellurite glass fibers,” J. Non-Cryst. Solids 352, 510-513 (2006). [CrossRef]
  11. M. D. O'Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc. 90, 1448-1457 (2007). [CrossRef]
  12. J. Wang, S. Prasad, K. Kiang, R. K. Pattnaik, J. Toulouse, and H. Jain, “Source of optical loss in tellurite glass fibers,” J. Non-Cryst. Solids 352, 510-513 (2006). [CrossRef]
  13. A. Lin and W.-T. Han, “Au nanoparticles incorporated germano-silicate glass fiber with high resonant nonlinearity,” J. Nanophoton. 1, 013554 (2007). [CrossRef]
  14. A. Lin, X. Liu, P. R. Watekar, Y. Chung, and W.-T. Han, “Ag nanocrystal-incorporated germano-silicate optical fiber with high resonant nonlinearity,” Appl. Phys. Lett. 93, 021901 (2008). [CrossRef]
  15. A. Lin, B. H. Kim, D. S. Moon, Y. Chung, and W.-T. Han, “Cu2+-doped germano-silicate glass fiber with high resonant nonlinearity,” Opt. Express 15, 3665-3672 (2007). [CrossRef]
  16. A. Lin, P. R. Watekar, G. Sun, Y. Chung, and W.-T. Han, “Pb2+/Al3+ codoped germano-silicate optical fiber with high non-resonant third-order nonlinearity,” J. Non-Cryst. Solids 354, 3907-3909 (2008). [CrossRef]
  17. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous wave measurement of n2 in various types of telecommunication fiber at 1.55 μm,” Opt. Lett. 21, 1966-1968 (1996). [CrossRef]
  18. K. Nakajima, T. Omae, and M. Ohashi, “Conditions for measuring nonlinear refractive index n2 of various single-mode fibers using cw-SPM method,” IEEE Proc. Optoelectron. 148, 209-214 (2001).
  19. P. Joshi, S. Shen, and A. Jha, “Er3+-doped boro-tellurite glass for optical amplification in the 1530-1580 nm,” J. Appl. Phys. 103, 083543 (2008). [CrossRef]
  20. A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5 μm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62, 6215-6227 (2000).
  21. R. Jose and Y. Ohishi, “Higher nonlinear indices, Raman gain coefficients, and bandwidths in the TeO2─ZnO─Nb2O5─MoO3 quaternary glass system,” Appl. Phys. Lett. 90, 211104(2007). [CrossRef]
  22. G. Senthil Murugan, T. Suzuki, and Y. Ohishi, “Tellurite glasses for ultrabroadband fiber Raman amplifiers,” Appl. Phys. Lett. 86, 161109 (2005). [CrossRef]
  23. X. Zhu, Q. Li, N. Ming, and Z. Meng, “Origin of optical nonlinearity for PbO, TiO2, K2O, and SiO2 optical glasses,” Appl. Phys. Lett. 71, 867-869 (1997). [CrossRef]
  24. N. Sugimoto, H. Kanbara, S. Fujiwara, K. Tanaka, and K. Hirao, “Ultrafast response of third-order optical nonlinearity in glasses containing Bi2O3,” Opt. Lett. 21, 1637-1639(1996). [CrossRef]
  25. D. W. Hall, M. A. Newhouse, N. F. Borreli, W. H. Dumbaugh, and D. L. Weildman, “Nonlinear optical susceptibilities of high-index glasses,” Appl. Phys. Lett. 54, 1293 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited