OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 26 — Sep. 10, 2009
  • pp: 4947–4962

Error decomposition and estimation of inherent optical properties

Mhd. Suhyb Salama and Alfred Stein  »View Author Affiliations


Applied Optics, Vol. 48, Issue 26, pp. 4947-4962 (2009)
http://dx.doi.org/10.1364/AO.48.004947


View Full Text Article

Enhanced HTML    Acrobat PDF (1340 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a methodology to quantify and separate the errors of inherent optical properties (IOPs) derived from ocean-color model inversion. Their total error is decomposed into three different sources, namely, model approximations and inversion, sensor noise, and atmospheric correction. Prior information on plausible ranges of observation, sensor noise, and inversion goodness-of-fit are employed to derive the posterior probability distribution of the IOPs. The relative contribution of each error component to the total error budget of the IOPs, all being of stochastic nature, is then quantified. The method is validated with the International Ocean Colour Coordinating Group (IOCCG) data set and the NASA bio-Optical Marine Algorithm Data set (NOMAD). The derived errors are close to the known values with correlation coefficients of 60–90% and 67–90% for IOCCG and NOMAD data sets, respectively. Model-induced errors inherent to the derived IOPs are between 10% and 57% of the total error, whereas atmospheric-induced errors are in general above 43% and up to 90% for both data sets. The proposed method is applied to synthesized and in situ measured populations of IOPs. The mean relative errors of the derived values are between 2% and 20%. A specific error table to the Medium Resolution Imaging Spectrometer (MERIS) sensor is constructed. It serves as a benchmark to evaluate the performance of the atmospheric correction method and to compute atmospheric-induced errors. Our method has a better performance and is more appropriate to estimate actual errors of ocean-color derived products than the previously suggested methods. Moreover, it is generic and can be applied to quantify the error of any derived biogeophysical parameter regardless of the used derivation.

© 2009 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.1690) Atmospheric and oceanic optics : Color

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: January 2, 2009
Revised Manuscript: August 17, 2009
Manuscript Accepted: August 17, 2009
Published: September 2, 2009

Virtual Issues
Vol. 4, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Mhd. Suhyb Salama and Alfred Stein, "Error decomposition and estimation of inherent optical properties," Appl. Opt. 48, 4947-4962 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-26-4947


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Zibordi, “A network for standardized ocean color validation measurements,” EOS Trans. Am. Geophys. Union 87, 293-297 (2006). [CrossRef]
  2. J. Duarte, M. Vélez-Reyes, S. Tarantola, F. Gilbes, and R. Armstrong, “A probabilistic sensitivity analysis of water-leaving radiance to water constituents in coastal shallow waters,” Proc. SPIE 5155, 162-173 (2003). [CrossRef]
  3. M. Sydor, R. Gould, R. Arnone, V. Haltrin, and W. Goode, “Uniqueness in remote sensing of the inherent optical properties of ocean water,” Appl. Opt. 43, 2156-2162(2004). [CrossRef] [PubMed]
  4. S. Salama, “Optical remote sensing for the estimation of marine bio-geophysical quantities,” Ph.D. dissertation (Katholieke Universiteit Leuven, 2003).
  5. S. Maritorena and D. Siegel, “Consistent merging of satellite ocean color data sets using a bio-optical model,” Remote Sens. Environ. 94, 429-440 (2005). [CrossRef]
  6. P. Wang, E. Boss, and C. Roesler, “Uncertainties of inherent optical properties obtained from semianalytical inversions of ocean color,” Appl. Opt. 44, 4074-4084 (2005). [CrossRef] [PubMed]
  7. D. Bates and D. Watts, “Nonlinear regression: iterative estimation and linear approximations,” in Nonlinear Regression Analysis and Its Applications, D. Bates and D. Watts, eds. (Wiley, 1988), pp. 32-65.
  8. S. Salama and Z. Su, “Bayesian approach to resolve the sub-scale spatial variability of ocean color match-ups: methodology and performance,” in Proceedings of the XIX Ocean Optics Conference (Oceanography Society, 2009).
  9. J. Werdell and S. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98, 122-140(2005). [CrossRef]
  10. Z. Lee, “Remote sensing of inherent optical properties: fundamentals, tests of algorithms, and applications,” Tech. Rep. 5 (International Ocean-Colour Coordinating Group, 2006).
  11. H. Gordon, O. Brown, R. Evans, J. Brown, R. Smith, K. Baker, and D. Clark, “A semianalytical radiance model of ocean color,” J. Geophys. Res. 93, 10909-10924 (1988). [CrossRef]
  12. S. Maritorena, D. Siegel, and A. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41, 2705-2714 (2002). [CrossRef] [PubMed]
  13. T. Petzold, “Volume scattering functions for selected ocean waters,” in Light in the Sea, J. Tyler, ed. (Dowden, Hutchinson and Ross, 1977), Vol. 12, pp. 150-174.
  14. R. Pope and E. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710-8723 (1997). [CrossRef]
  15. C. Mobley, Light and Water Radiative Transfer in Natural Waters (Academic, 1994).
  16. Z. Lee, K. Carder, C. Mobley, R. Steward, and J. Patch, “Hyperspectral remote sensing for shallow waters: 1. A semianalytical model,” Appl. Opt. 37, 6329-6338 (1998). [CrossRef]
  17. A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic-matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43-53 (1981). [CrossRef]
  18. O. Kopelevich, “Small-parameter model of optical properties of sea waters,” in Ocean Optics, A. Monin, ed. (Nauka, 1983), pp. 208-234.
  19. M. S. Salama, A. G. Dekker, Z. Su, C. M. Mannaerts, and W. Verhoef, “Deriving inherent optical properties and associated inversion-uncertainties in the Dutch Lakes,” Hydrol. Earth Syst. Sci. 13, 1113-1121 (2009). [CrossRef]
  20. W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C++, The Art of Scientific Computing (Cambridge U. Press, 2002).
  21. Z. Lee, K. Carder, C. Mobley, R. Steward, and J. Patch, “Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization,” Appl. Opt. 38, 3831-3843 (1999). [CrossRef]
  22. H. Gordon, “Atmospheric correction of ocean color imagery in the earth observing system era,” J. Geophys. Res. 102, 17081-17106 (1997). [CrossRef]
  23. H. Gordon, J. Brown, and R. Evans, “Exact Rayleigh scattering calculation for the use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt. 27, 862-871 (1988). [CrossRef] [PubMed]
  24. C. Cox and W. Munk, “Measurements of the roughness of the sea surface from photographs of the sun glitter,” J. Opt. Soc. Am. 44, 838-850 (1954). [CrossRef]
  25. R. Goody, Atmospheric Radiation 1, Theoretical Basis (Oxford University, 1964).
  26. W. Malkmus, “Random Lorentz band model with exponential-tailed s−1 line intensity distribution function,” J. Opt. Soc. Am. 57, 323-329 (1967). [CrossRef]
  27. H. Gordon, D. Clark, J. Brown, O. Brown, R. Evans, and W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22, 20-36 (1983). [CrossRef] [PubMed]
  28. R. Zaneveld, “Optical closure: from theory to measurement,” in Ocean Optics, Vol. 25 of Oxford Monographs on Geology and Geophysics, R. Spinrad, K. Carder, and M. Perry, eds. (Oxford University, 1994).
  29. C. Hu, Z. Chen, T. Clayton, P. Swarzenski, J. Brock, and F. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: initial results from Tampa Bay, FL,” Remote Sens. Environ. 93, 423-441 (2004). [CrossRef]
  30. Y. Brad, Nonlinear Parameter Estimation (Academic, 1974).
  31. J. Bernardo, “Expected information as expected utility,” Ann. Stat. 7, 686-690 (1979). [CrossRef]
  32. B. Carlin and N. Polson, “An expected utility approach to influence diagnostics,” J. Am. Stat. Assoc. 86, 1013-1021(1991). [CrossRef]
  33. C. Goutis and C. Robert, “Model choice in generalised linear models: a Bayesian approach via Kullback-Leibler projections,” Biometrika 85, 29-37 (1998). [CrossRef]
  34. E. Jaynes, “Information theory and statistical mechanics,” Phys. Rev. 106, 620-630 (1957). [CrossRef]
  35. E. Jaynes, “Information theory and statistical mechanics,” Phys. Rev. 108, 171-190 (1957). [CrossRef]
  36. E. Jaynes, “Prior probabilities,” IEEE Trans. Syst. Sci. Cybern. 4, 227-241 (1968). [CrossRef]
  37. J. Campbell, “The log-normal distribution as a model for bio-optical variability in the sea,” J. Geophys. Res. 100, 13237-13254 (1995). [CrossRef]
  38. V. Singh, “Entropy-based parameter estimation in hydrology,” in Water Science and Technology Library (Kluwer Academic, 1998), Vol. 30.
  39. C. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379-423, 623-656 (1948).
  40. G. Christakos, “A Bayesian/maximum-entropy view to the spatial estimation problem,” Math. Geol. 22, 763-777 (1990). [CrossRef]
  41. J. M.Bernardo, “Reference analysis,” in Handbook of Statistics, D. K. Dey and C. R. Rao, eds. (North-Holland, 2005), Vol. 25, pp. 17-90. [CrossRef]
  42. S. Kullback and R. Leibler, “On information and sufficiency,” Ann. Math. Stat. 22, 79-86 (1951). [CrossRef]
  43. W. Johnson and S. Geisser, “Estimative influence measures of the multivariate general linear model,” J. Stat. Planning Inference 11, 33-56 (1985). [CrossRef]
  44. R. Y. Rubinstein and D. P. Kroese, “Information science and statistics,” in The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning (Springer, 2004). [PubMed]
  45. M. D. Kendall and A. Stuart, The Advanced Theory of Statistics: Distribution Theory, 5th ed. (Griffin, 1987), Vol. 1.
  46. H. Hoogenboom and A. Dekker, “The sensitivity of medium resolution imaging spectrometer MERIS for detecting chlorophyll and seton dry weight in coastal and inland waters,” in Proceedings of IEEE Conference on Geoscience and Remote Sensing (IEEE, 1998), p. 183.
  47. R. Doerffer, “Analysis of the signal/noise and the water leaving radiance Finnish lakes,” Tech. rep. (Brockmann Consult, 2008).
  48. B. Holben, T. Eckdagger, I. Slutsker, E. Sospedra, V. Caselles, C. Coll, E. Valor, and E. Rubio, “Validation of cloud detection algorithms,” EARSeL Symposium on Remote Sensing in the 21st century: Economic and Environmental Applications (Balkema, 2000), pp. 119-123.
  49. E. Vermote, D. Tanre, J. Deuze, M. Herman, and J. Morcrette, “Second simulation of the satellite signal in the solar spectrum, 6S: an overview,” IEEE Trans. Geosci. Remote Sens. 35, 675-686 (1997). [CrossRef]
  50. J. Werdell, Franz, B. Franza, S. Bailey, L. Harding, and G. Feldman, “Approach for the long-term spatial and temporal evaluation of ocean color satellite data products in a coastal environment,” Proc. SPIE 6680, 66800G (2007). [CrossRef]
  51. H. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the ocean with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443-452 (1994). [CrossRef] [PubMed]
  52. A. Morel and S. Bélanger, “Improved detection of turbid waters from ocean color sensors information,” Remote Sens. Environ. 102, 237-249 (2006). [CrossRef]
  53. R. Austin and T. Petzold, “The determination of the diffuse attenuation coefficient of seawater using the Coastal Zone Color Scanner,” in Oceanography from Space, J. Gower, ed. (Plenum, 1981), pp. 239-256. [CrossRef]
  54. S. Salama, J. Monbaliu, and P. Coppin, “Atmospheric correction of advanced very high resolution radiometer imagery,” Int. J. Remote Sens. 25, 1349-1355 (2004). [CrossRef]
  55. G. Neukermans, B. Nechad, and K. Ruddick, “Optical remote sensing of coastal waters from geostationary platforms: a feasibility study--mapping total suspended matter with SEVIRI,” in Proceedings of the XIX Ocean Optics Conference (Oceanography Society, 2008).
  56. M. Eleveld, H. van der Woerd, G. El Serafy, M. Blaas, T. van Kessel, and G. de Boer, “Assimilation of remotely sensed observations in a sediment transport model,” in Proceedings of the XIX Ocean Optics Conference (Oceanography Society, 2008).
  57. C. Pottier, V. Garon, G. Larnicol, J. Sudre, P. Schaeffer, and P.-Y. Le Traon, “Merging SeaWiFS and MODIS/Aqua ocean color data in North and Equatorial Atlantic using weighted averaging and objective analysis,” IEEE Trans. Geosci. Remote Sens. 44, 3436-3451 (2006). [CrossRef]
  58. R. van der Velde, Z. Su, and Y. Ma, “Impact of soil moisture dynamics on ASAR σo signatures and its spatial variability observed over the Tibetan Plateau,” Sensors 8, 5479-5491(2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited