OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 26 — Sep. 10, 2009
  • pp: 4985–4995

Accurate cross-sectional stress profiling of optical fibers

Michael R. Hutsel, Reeve Ingle, and Thomas K. Gaylord  »View Author Affiliations


Applied Optics, Vol. 48, Issue 26, pp. 4985-4995 (2009)
http://dx.doi.org/10.1364/AO.48.004985


View Full Text Article

Enhanced HTML    Acrobat PDF (1005 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel technique for determining two-dimensional, cross-sectional stress distributions in optical fibers and fiber-based devices is presented. Use of the Brace–Köhler compensator technique and a polarization microscope for the measurement of retardation due to stress-induced birefringence is described, along with the tomographic reconstruction process for the determination of stress. Measurements are performed on Corning SMF-28 fiber in an unperturbed section, a section near a cleaved end-face, and a section exposed to CO 2 laser radiation. Cross-sectional stress distributions are presented. Stress relaxation is quantified in the cleaved fiber and the fiber exposed to CO 2 laser radiation.

© 2009 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2400) Fiber optics and optical communications : Fiber properties
(110.0180) Imaging systems : Microscopy
(120.5410) Instrumentation, measurement, and metrology : Polarimetry

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 16, 2009
Revised Manuscript: August 21, 2009
Manuscript Accepted: August 23, 2009
Published: September 2, 2009

Citation
Michael R. Hutsel, Reeve Ingle, and Thomas K. Gaylord, "Accurate cross-sectional stress profiling of optical fibers," Appl. Opt. 48, 4985-4995 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-26-4985


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. W. Scherer, “Stress-induced index profile distortion in optical-waveguides,” Appl. Opt. 19, 2000-2006 (1980). [CrossRef] [PubMed]
  2. Y. Hibino, F. Hanawa, and M. Horiguchi, “Drawing-induced residual stress effects on optical characteristics in pure-silica-core single-mode fibers,” J. Appl. Phys. 65, 30-34 (1989). [CrossRef]
  3. A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 300-311 (2004). [CrossRef]
  4. D. I. Yeom, H. S. Kim, M. S. Kang, H. S. Park, and B. Y. Kim, “Narrow-bandwidth all-fiber acoustooptic tunable filter with low polarization-sensitivity,” IEEE Photon. Technol. Lett. 17, 2646-2648 (2005). [CrossRef]
  5. J. A. Buck, Fundamentals of Optical Fibers (Wiley, 2004).
  6. I. H. Shin, B. H. Kim, S. P. Veetil, W. T. Han, and D. Y. Kim, “Residual stress relaxation in cleaved fibers,” Opt. Commun. 281, 75-79 (2008). [CrossRef]
  7. P. Y. Fonjallaz, H. G. Limberger, R. P. Salathe, F. Cochet, and B. Leuenberger, “Tension increase correlated to refractive-index change in fibers containing UV-written Bragg gratings,” Opt. Lett. 20, 1346-1348 (1995). [CrossRef] [PubMed]
  8. D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302-303 (1998). [CrossRef]
  9. S. Yamasaki, M. Akiyama, K. Nishide, A. Wada, and R. Yamauchi, “Characteristics of long-period fiber grating utilizing periodic stress relaxation,” IEICE Trans. Electron. E83-C, 440-443 (2000).
  10. C.-S. Kim, Y. Han, B. H. Lee, W.-T. Han, U.-C. Paek, and Y. Chung, “Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress,” Opt. Commun. 185, 337-342 (2000). [CrossRef]
  11. B. H. Kim, Y. Park, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Opt. Lett. 26, 1657-1659 (2001). [CrossRef]
  12. H. S. Ryu, Y. Park, S. T. Oh, Y. J. Chung, and D. Y. Kim, “Effect of asymmetric stress relaxation on the polarization-dependent transmission characteristics of a CO2 laser-written long-period fiber grating,” Opt. Lett. 28, 155-157 (2003). [CrossRef] [PubMed]
  13. F. Durr, H. G. Limberger, R. P. Salathe, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84, 4983-4985 (2004). [CrossRef]
  14. F. Durr, G. Rego, P. V. S. Marques, S. L. Semjonov, E. M. Dianov, H. G. Limberger, and R. P. Salathe, “Tomographic stress profiling of arc-induced long-period fiber gratings,” J. Lightwave Technol. 23, 3947-3953 (2005). [CrossRef]
  15. P. L. Chu and T. Whitbread, “Measurement of stresses in optical fiber and preform,” Appl. Opt. 21, 4241-4245 (1982). [CrossRef] [PubMed]
  16. K. W. Raine, R. Feced, S. E. Kanellopoulos, and V. A. Handerek, “Measurement of axial stress at high spatial resolution in ultraviolet-exposed fibers,” Appl. Opt. 38, 1086-1095 (1999). [CrossRef]
  17. Y. Park, T.-J. Ahn, Y. H. Kim, W.-T. Han, U. C. Paek, and D. Y. Kim, “Measurement method for profiling the residual stress and the strain-optic coefficient of an optical fiber,” Appl. Opt. 41, 21-26 (2002). [CrossRef] [PubMed]
  18. Y. Park, S. Choi, U.-C. Paek, K. Oh, and D. Y. Kim, “Measurement method for profiling the residual stress of an optical fiber: detailed analysis of off-focusing and beam-deflection effects,” Appl. Opt. 42, 1182-1190 (2003). [CrossRef] [PubMed]
  19. L. Bruno, L. Pagnotta, and A. Poggialini, “A full-field method for measuring residual stresses in optical fiber,” Opt. Lasers Eng. 44, 577-588 (2006). [CrossRef]
  20. C. C. Montarou, T. K. Gaylord, and A. I. Dachevski, “Residual stress profiles in optical fibers determined by the two-waveplate-compensator method,” Opt. Commun. 265, 29-32(2006). [CrossRef]
  21. T. Abe, Y. Mitsunaga, and H. Koga, “Photoelastic computer tomography: a novel measurement method for axial residual stress profile in optical fibres,” J. Opt. Soc. Am. A 3, 133-138 (1986). [CrossRef]
  22. Y. Park, U.-C. Paek, and D. Y. Kim, “Complete determination of the stress tensor of a polarization-maintaining fiber by photoelastic tomography,” Opt. Lett. 27, 1217-1219 (2002). [CrossRef]
  23. Y. Park, U.-C. Paek, and D. Y. Kim, “Determination of stress-induced intrinsic birefringence in a single-mode fiber by measurement of the two-dimensional stress profile,” Opt. Lett. 27, 1291-1293 (2002). [CrossRef]
  24. Y. Park, U.-C. Paek, and D. Y. Kim, “Characterization of a stress-applied polarization-maintaining (PM) fiber through photoelastic tomography,” J. Lightwave Technol. 21, 997-1004(2003). [CrossRef]
  25. P. Kniazewski, T. Kozacki, and M. Kujawinska, “Inspection of axial stress and refractive index distribution in polarization-maintaining fiber with tomographic methods,” Opt. Lasers Eng. 47, 259-263 (2009). [CrossRef]
  26. T. Colomb, F. Durr, E. Cuche, P. Marquet, H. G. Limberger, R. P. Salathe, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements,” Appl. Opt. 44, 4461-4469(2005). [CrossRef] [PubMed]
  27. B. Sevigny, F. Busque, N. Godbout, S. Lacroix, and M. Faucher, “High-resolution refractive index anisotropy measurement in optical fibers through phase retardation modulation,” Appl. Opt. 47, 1215-1222 (2008). [CrossRef] [PubMed]
  28. C. C. Montarou and T. K. Gaylord, “Two-wave-plate compensator method for single-point retardation measurements,” Appl. Opt. 43, 6580-6595 (2004). [CrossRef]
  29. C. C. Montarou, T. K. Gaylord, B. L. Bachim, A. I. Dachevski, and A. Agarwal, “Two-wave-plate compensator method for full-field retardation measurements,” Appl. Opt. 45, 271-280 (2006). [CrossRef] [PubMed]
  30. H. Aben, Photoelasticity of Glass (Springer-Verlag, 1993).
  31. J. Hsieh, Computed Tomography: Principles, Design, Artifacts, and Recent Advances (SPIE Press, 2003).
  32. D. A. Viskoe and G. W. Donohoe, “Optimal computed tomography data acquisition techniques and filter selection for detection of small density variations,” IEEE Trans. Instrum. Meas. 45, 70-76 (1996). [CrossRef]
  33. Y. Park, U.-C. Paek, S. Han, B.-H. Kim, C.-S. Kim, and D. Y. Kim, “Inelastic frozen-in stress in optical fibers,” Opt. Commun. 242, 431-436 (2004). [CrossRef]
  34. B. H. Kim, Y. Park, D. Y. Kim, U. C. Paek, and W. T. Han, “Observation and analysis of residual stress development resulting from OH impurity in optical fibers,” Opt. Lett. 27, 806-808 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited