OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 26 — Sep. 10, 2009
  • pp: 5005–5014

Swing effect of spatial solitons propagating through Gaussian and triangular waveguides

Mohammad Ebnali-Heidari, Majid K. Moravvej-Farshi, and Abbas Zarifkar  »View Author Affiliations


Applied Optics, Vol. 48, Issue 26, pp. 5005-5014 (2009)
http://dx.doi.org/10.1364/AO.48.005005


View Full Text Article

Enhanced HTML    Acrobat PDF (1928 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the behavior of spatial optical solitons propagating through inhomogeneous waveguides with Gaussian, single triangular, and double-triangular refractive index profiles. In a given Gaussian profile, as the soliton amplitude decreases below a certain value, its behavior deviates from that of a particlelike soliton. Dependence of the swing period of a spatial soliton in a single triangular index profile on its amplitude, η, is less significant than that in a Gaussian profile. We also report the interacting behavior of two solitons propagating simultaneously through a waveguide with a double-triangular index profile. Furthermore, we present the effects of the solitons’ initial phase factors and amplitude on their behavior.

© 2009 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

History
Original Manuscript: April 13, 2009
Revised Manuscript: July 27, 2009
Manuscript Accepted: August 9, 2009
Published: September 3, 2009

Citation
Majid Ebnali-Heidari, Mohammad K. Moravvej-Farshi, and Abbas Zarifkar, "Swing effect of spatial solitons propagating through Gaussian and triangular waveguides," Appl. Opt. 48, 5005-5014 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-26-5005


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. P. Agrawal, Fiber Optic Communication Systems (Wiley, 2002). [CrossRef]
  2. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  3. E. N. Tsoy and C. M. Sterk, “Soliton dynamics in nonuniform fiber Bragg gratings,” J. Opt. Soc. Am. B 18, 1-6 (2001). [CrossRef]
  4. N. J. Doran and D. Wood, “Soliton processing element for all-optical switching and logic,” J. Opt. Soc. Am. B 4, 1843-1846 (1987). [CrossRef]
  5. L. Lefort and A. Barthelemy, “All-optical demultiplexing of a signal using collision and waveguiding of spatial solitons,” IEEE Photonics Technol. Lett. 9, 1364-1366 (1997). [CrossRef]
  6. X. D. Cao and D. D. Meyerhofer, “All-optical switching by means of collisions of spatial vector solitons,” Opt. Lett. 19, 1711-1713 (1994). [CrossRef] [PubMed]
  7. F. Garzia, C. Sibilia, and M. Bertolotti, “New phase modulation technique based on spatial soliton switching,” J. Lightwave Technol. 19, 1036-1042 (2001). [CrossRef]
  8. V. N. Serkin and M. Matsumoto, “Bright and dark solitary nonlinear bloch waves in dispersion managed fiber systems and soliton lasers,” Opt. Commun. 196, 159-171 (2001). [CrossRef]
  9. M. Ebnali-Heidari, M. K. Moravvej-Farshi, and A. Zarifkar, “Multi-channel wavelength conversion using fourth order soliton decay,” J. Lightwave Technol. 25, 2571-2578 (2007). [CrossRef]
  10. A. B. Aceves, J. V. Moloney, and A. C. Newell, “Theory of light-beam propagation at nonlinear interfaces. I. Equivalent-particle theory for a single interface,” Phys. Rev. A 39, 1809-1827 (1989). [CrossRef] [PubMed]
  11. F. Garzia, C. Sibilia, and M. Bertolotti, “Swing effect of Spatial Soliton,” Opt. Commun. 139, 193-198 (1997). [CrossRef]
  12. A. Suryanto and E. van Groesen, “Self-splitting of multisoliton bound states in planar Kerr waveguides,” Opt. Commun. 258, 264-274 (2006). [CrossRef]
  13. Q. Chang and E. Jia, “Difference schemes for solving the generalized nonlinear Schrödinger equation,” J. Comput. Phys. 148, 397-415 (1999). [CrossRef]
  14. F. Garzia, C. Sibilia, M. Bertolotti, R. Horak, and J. Bajer, “Phase properties of a two-soliton system in a nonlinear planar waveguide,” Opt. Commun. 108, 47-54 (1994). [CrossRef]
  15. F. Garzia, C. Sibilia, and M. Bertolotti, “All-optical serial switcher,” Opt. Quantum Electron. 32, 781-798 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited