OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 27 — Sep. 20, 2009
  • pp: 5050–5054

Small-hole waveguides in silicon photonic crystal slabs: efficient use of the complete photonic bandgap

Christian Bayer and Martin Straub  »View Author Affiliations


Applied Optics, Vol. 48, Issue 27, pp. 5050-5054 (2009)
http://dx.doi.org/10.1364/AO.48.005050


View Full Text Article

Enhanced HTML    Acrobat PDF (525 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate photonic crystal waveguides that are formed by holes of reduced diameter within a hexagonal lattice of cylindrical airholes in thin freestanding silicon slabs. The waveguides operate in both an even-symmetry bandgap and a partial gap of odd-symmetry modes that form a complete two-dimensional bandgap under the light line. The operating frequency is tuned by the small-hole diameter to fit within the range of both bandgaps and to match a free-space wavelength of 1550 nm . Their narrow bandwidth and low group velocity of light propagation renders the waveguides useful as filters or sensing elements. Because of the strong dependence of the waveguide mode characteristics on structural changes, the highest-precision lithographic fabrication techniques must be applied.

© 2009 Optical Society of America

OCIS Codes
(230.7400) Optical devices : Waveguides, slab
(160.5293) Materials : Photonic bandgap materials
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: April 30, 2009
Revised Manuscript: August 25, 2009
Manuscript Accepted: August 25, 2009
Published: September 10, 2009

Citation
Christian Bayer and Martin Straub, "Small-hole waveguides in silicon photonic crystal slabs: efficient use of the complete photonic bandgap," Appl. Opt. 48, 5050-5054 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-27-5050


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 2008).
  2. K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic Crystals (Wiley, 2004). [CrossRef]
  3. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212-8222 (2000). [CrossRef]
  4. M. Loncar, T. Doll, J. Kovi, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1402-1411 (2000). [CrossRef]
  5. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001). [CrossRef] [PubMed]
  6. C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Hermann, O. Hess, and U. Gösele, “Silicon-based two-dimensional photonic crystal waveguides,” Photon. Nanostruct. Fundam. Appl. 1, 1-13 (2003). [CrossRef]
  7. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787-3790 (1996). [CrossRef] [PubMed]
  8. A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488-4492 (2000). [CrossRef]
  9. S. Assefa, S. J. McNab, and Y. A. Vlasov, “Transmission of slow light through photonic crystal waveguide bends,” Opt. Lett. 31, 745-747 (2006). [CrossRef] [PubMed]
  10. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751-5758 (1999). [CrossRef]
  11. A. Taflove and S. C. Hagness, Computational Electrodynamics (Artech House, 2005).
  12. FDTD Solutions, Lumerical Solutions, Inc., Vancouver, British Columbia, Canada.
  13. J.-P. Berenger, “Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 127, 363-379 (1996). [CrossRef]
  14. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005). [CrossRef] [PubMed]
  15. D. Gerace and L. C. Andreani, “Disorder-induced losses in photonic crystal waveguides with line defects,” Opt. Lett. 29, 1897-1899 (2004). [CrossRef] [PubMed]
  16. K. R. Maskaly, C. Carter, R. D. Averitt, and J. D. Maxwell, “The effect of interfacial roughness on the normal incidence bandgap of one-dimensional photonic crystals,” Opt. Express 13, 8380-8389 (2005). [CrossRef] [PubMed]
  17. J. Topolancik, F. Vollmer, R. Ilic, and M. Crescimanno, “Out-of-plane scattering from vertically asymmetric photonic crystal slab waveguides with in-plane disorder,” Opt. Express 17, 12470-12480 (2009). [CrossRef] [PubMed]
  18. D.-B. Kao, J. P. McVittie, W. D. Nix, and K. C. Saraswat, “Two-dimensional thermal oxidation of silicon. I. Experiments,” IEEE Trans. Electron. Devices 34, 1008-1017(1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited