OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 27 — Sep. 20, 2009
  • pp: 5088–5094

Microvalve thickness and topography measurements in microfluidic devices by white-light confocal microscopy

Shiguang Li, Todd Thorsen, Zhiguang Xu, Zhong Ping Fang, Jianhong Zhao, and Soon Fatt Yoon  »View Author Affiliations

Applied Optics, Vol. 48, Issue 27, pp. 5088-5094 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1031 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A microvalve is a key part in a multilayer microfluidic device to control the fluid flow, and its thickness directly determines its performance. In this paper, a three-dimensional measurement technology using a white-light confocal microscope is developed for measuring both the topography and thickness of microvalves. The impact of system parameters and sample parameters on measurement accuracy is discussed in detail, particularly for measurement with a dry objective. With this technique, the microvalve thicknesses before and after bonding were characterized with submicrometer measurement sensitivity and about 1 μm measurement accuracy.

© 2009 Optical Society of America

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(080.1010) Geometric optics : Aberrations (global)
(110.2960) Imaging systems : Image analysis
(110.6880) Imaging systems : Three-dimensional image acquisition
(180.1790) Microscopy : Confocal microscopy

ToC Category:

Original Manuscript: June 9, 2009
Revised Manuscript: August 8, 2009
Manuscript Accepted: August 9, 2009
Published: September 10, 2009

Virtual Issues
Vol. 4, Iss. 11 Virtual Journal for Biomedical Optics

Shiguang Li, Todd Thorsen, Zhiguang Xu, Zhong Ping Fang, Jianhong Zhao, and Soon Fatt Yoon, "Microvalve thickness and topography measurements in microfluidic devices by white-light confocal microscopy," Appl. Opt. 48, 5088-5094 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. H. Grover and R. A. Mathies, “An integrated microfluidic processor for single nucleotide polymorphism based DNA computing,” Lab on a Chip 5, 1033-1040 (2005). [CrossRef] [PubMed]
  2. R. E. Oosterbroek, D. C. Hermes, M. Kakuta, F. Benito-Lopez, J. G. E. Gardeniers, W. Verboom, D. N. Reinhoudt, and A. van den Berg, “Fabrication and mechanical testing of glass chips for high-pressure synthetic or analytical chemistry,” Microsyst. Technol. 12, 450-454 (2006). [CrossRef]
  3. P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, “Microfluidic tunable photonic band-gap device,” Appl. Phys. Lett. 84, 1838-1840 (2004). [CrossRef]
  4. K. B. Neeves and S. L. Diamond, “A membrane-based microfluidic device for controlling the flux of platelet agonists into flowing blood,” Lab on a Chip 7, 638-640 (2007). [CrossRef]
  5. Z. C. Long, Z. Shen, D. P. Wu, J. H. Qin, and B. C. Lin, “Integrated multilayer microfluidic device with a nanoporous membrane interconnect for online coupling of solid-phase extraction to microchip electrophoresis,” Lab on a Chip 7, 1819-1824 (2007). [CrossRef] [PubMed]
  6. A. J. Blake, T. M. Pearce, N. S. Rao, S. M. Johnson, and J. C. Williams, “Multilayer PDMS microfluidic chamber for controlling brain slice microenvironment,” Lab on a Chip 7, 842-849(2007). [CrossRef] [PubMed]
  7. M. A. Name, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288, 113-116(2000). [CrossRef]
  8. R. M. A. Azzam, M. Elshazly-Zaghloul, and N. M. Bashara, “Combined reflection and transmission thin-film ellipsometry: a unified linear analysis,” Appl. Opt. 14, 1652-1663(1975). [CrossRef] [PubMed]
  9. S. W. Kim and G. H. Kim, “Thickness-profile measurement of transparent thin-film layers by white-light scanning interferometry,” Appl. Opt. 38, 5968-5973 (1999). [CrossRef]
  10. J. S. Courtney-Pratt and R. L. Gregory, “Microscope with enhanced depth of field and 3-D capability,” Appl. Opt. 12, 2509-2519 (1973). [CrossRef] [PubMed]
  11. G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229-233 (1984). [CrossRef]
  12. G. H. Huang, S. P. Deng, and S. R. Xiao, “Inspecting polyaniline membrane with laser confocal scan microscope,” Proc. SPIE 5630, 452-456 (2005). [CrossRef]
  13. C. Cox and C. J. R. Sheppard, “Measurement of thin coatings in the confocal microscope,” Micron 32, 701-705 (2001). [CrossRef] [PubMed]
  14. M. A. Snyder, D. G. Vlachos, and V. Nikolakis, “Quantitative analysis of membrane morphology, microstructure, and polycrystallinity via laser scanning confocal microscopy: application to NaX zeolite membranes,” J. Membr. Sci. 290, 1-18(2007). [CrossRef]
  15. C. Charcosset and J.-C. Bernengo, “Comparison of microporous membrane morphologies using confocal scanning laser microscopy,” J. Membr. Sci. 168, 53-62 (2000). [CrossRef]
  16. J. G. Reyes, J. Meneses, A. Plata, G. Tribillon, and T. Gharbi, “Chromatic confocal method for determination of the refractive index and thickness,” Proc. SPIE 5622, 805-810 (2004). [CrossRef]
  17. M. Hildebrandt, Zeiss Axiotron Inspection Microscope Operating Manual preliminary version, version 0.1 (HSEB Dresden GmbH, 2005.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited