OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 27 — Sep. 20, 2009
  • pp: 5099–5104

Tri-arm multipinhole interferometer for wavefront measurement and diffractive imaging

Gong-Xiang Wei, Lei-Lei Lu, Cheng-Shan Guo, and Hui-Tian Wang  »View Author Affiliations


Applied Optics, Vol. 48, Issue 27, pp. 5099-5104 (2009)
http://dx.doi.org/10.1364/AO.48.005099


View Full Text Article

Enhanced HTML    Acrobat PDF (399 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a tri-arm (or Y-shaped) multipinhole (MP) interferometer for wavefront measurement based on a specially designed tri-arm MP plate. We demonstrate that the complex amplitude of a wavefront sampled by the tri-arm MP plate inserted between the object and the detector plane can be extracted directly from the Fourier transform of a far-field diffraction intensity pattern without the need for any iterative algorithm. A form of coherent diffractive imaging based on a rotatable tri-arm MP plate is also demonstrated, which provides a feasible approach for lensless diffractive imaging in real time

© 2009 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(100.3010) Image processing : Image reconstruction techniques
(100.5070) Image processing : Phase retrieval
(110.0110) Imaging systems : Imaging systems
(120.3180) Instrumentation, measurement, and metrology : Interferometry

ToC Category:
Image Processing

History
Original Manuscript: June 15, 2009
Revised Manuscript: August 24, 2009
Manuscript Accepted: August 24, 2009
Published: September 10, 2009

Citation
Gong-Xiang Wei, Lei-Lei Lu, Cheng-Shan Guo, and Hui-Tian Wang, "Tri-arm multipinhole interferometer for wavefront measurement and diffractive imaging," Appl. Opt. 48, 5099-5104 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-27-5099


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Schnars and W. Juptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179-181 (1994). [CrossRef]
  2. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997). [CrossRef]
  3. C. Wagner, S. Seebacher, W. Osten, and W. Jüptner, “Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology,” Appl. Opt. 38, 4812-4820(1999). [CrossRef]
  4. C. S. Guo, L. Zhang, H. T. Wang, J. Liao, and Y. Y. Zhu, “Phase-shifting error and its elimination in phase-shifting digital holography,” Opt. Lett. 27, 1687-1689 (2002). [CrossRef]
  5. F. Ghebremichael, G. P. Andersen, and K. S. Gurley, “Holography-based wavefront sensing,” Appl. Opt. 47, A62-A69 (2008). [CrossRef]
  6. R. G. Lane and M. Tallon, “Wave-front reconstruction using a Shack-Hartmann sensor,” Appl. Opt. 31, 6902-6908 (1992). [CrossRef]
  7. G. Y. Yoon, T. Jitsuno, M. Nakatsuka, and S. Nakai, “Shack-Hartmann wave-front measurement with a large F-number plastic microlens array,” Appl. Opt. 35, 188-192 (1996). [CrossRef]
  8. L. Seifert, H. J. Tiziani, and W. Osten, “Wavefront reconstruction with the adaptive Shack-Hartmann sensor,” Opt. Commun. 245, 255-269 (2005). [CrossRef]
  9. A. V. Goncharov, J. C. Dainty, and S. Esposito, “Compact multireference wavefront sensor design,” Opt. Lett. 30, 2721-2723(2005). [CrossRef]
  10. M. Ares, S. Royo, and J. Caum, “Shack-Hartmann sensor based on a cylindrical microlens array,” Opt. Lett. 32, 769-771(2007). [CrossRef]
  11. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Jena) 35, 237-246 (1972).
  12. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758-2769 (1982). [CrossRef]
  13. V. Elser, “Phase retrieval by iterated projections,” J. Opt. Soc. Am. A 20, 40-55 (2003). [CrossRef]
  14. J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400, 342-344 (1999).
  15. J. Miao, T. Ishikawa, B. Johnson, E. H. Anderson, B. Lai, and K. O. Hodgson, “High resolution 3D X-ray diffraction microscopy,” Phys. Rev. Lett. 89, 088303 (2002). [CrossRef]
  16. J. Miao, T. Ohsuna, O. Terasaki, K. O. Hodgson, and M. A. O'Keefe, “Atomic resolution three-dimensional electron diffraction microscopy,” Phys. Rev. Lett. 89, 155502 (2002). [CrossRef]
  17. G. J. Williams, M. A. Pfeifer, I. A. Vartanyants, and I. K. Robinson, “Three-dimensional imaging of microstructure in Au nanocrystals,” Phys. Rev. Lett. 90, 175501 (2003). [CrossRef]
  18. J. M. Zuo, I. Vartanyants, M. Gao, R. Zhang, and L. A. Nagahara, “Atomic resolution imaging of a Carbon nanotube from diffraction intensities,” Science 300, 1419-1421(2003). [CrossRef]
  19. S. Eisebitt, J. Lüning, W. F. Schlotter, M. Lörgen, O. Hellwig, W. Eberhardt, and J. Stöhr, “Lensless imaging of magnetic nanostructures by X-ray spectro-holography,” Nature 432, 885-888 (2004).
  20. D. Shapiro, P. Thibault, T. Beetz, V. Elser, M. Howells, C. Jacobsen, J. Kirz, E. Lima, H. Miao, A. M. Neiman, and D. Sayre, “Biological imaging by soft x-ray diffraction microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102, 15343-15346(2005).
  21. J. Miao, D. Sayre, and H. N. Chapman, “Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects,” J. Opt. Soc. Am. A 15, 1662-1669 (1998). [CrossRef]
  22. R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng. 21, 829-832 (1982).
  23. R. L. Kendrick, D. S. Acton, and A. L. Duncan, “Phase-diversity wave-front sensor for imaging systems,” Appl. Opt. 33, 6533-6546 (1994). [CrossRef]
  24. H. I. Campbell, S. Zhang, A. H. Greenaway, and S. Restaino, “Generalized phase diversity for wave-front sensing,” Opt. Lett. 29, 2707-2709 (2004). [CrossRef]
  25. H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett. 93, 023903 (2004). [CrossRef]
  26. J. M. Rodenburg, A. C. Hurst, A. G. Cullis, B. R. Dobson, F. Pfeiffer, O. Bunk, C. David, K. Jefimovs, and I. Johnson, “Hard-X-ray lensless imaging of extended objects,” Phys. Rev. Lett. 98, 034801 (2007). [CrossRef]
  27. P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379-382 (2008). [CrossRef]
  28. I. Johnson, K. Jefimovs, O. Bunk, C. David, M. Dierolf, J. Gray, D. Renker, and F. Pfeiffer, “Coherent diffractive imaging using phase front modifications,” Phys. Rev. Lett. 100, 155503 (2008). [CrossRef]
  29. C. S. Guo, L. L. Lu, G. X. Wei, J. L. He, and D. M. Tong, “Diffractive imaging based on a multipinhole plate,” Opt. Lett. 34, 1813-1815 (2009). [CrossRef]
  30. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping Theory, Algorithms and Software (Wiley, 1998).
  31. B. Gutmann, “Phase unwrapping with the branch-cut method: clustering of discontinuity sources and reverse simulated annealing,” Appl. Opt. 38, 5577-5793 (1999). [CrossRef]
  32. C. W. Chen and H. A. Zebker, “Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms,” J. Opt. Soc. Am. A 17, 401-414 (2000). [CrossRef]
  33. M. A. Herráez, M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Robust, fast, and effective two-dimensional automatic phase unwrapping algorithm based on image decomposition,” Appl. Opt. 41, 7445-7455 (2002). [CrossRef]
  34. D. C. Ghiglia and L. A. Romero, “Robust Two-Dimensional Weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” J. Opt. Soc. Am. A 11, 107-117 (1994). [CrossRef]
  35. S. Marano, F. Palmieri, and G. Franceschetti, “Discrete Greens methods and their application to two-dimensional phase unwrapping,” J. Opt. Soc. Am. A 19, 1319-1333(2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited