OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 27 — Sep. 20, 2009
  • pp: 5121–5126

Broadband IR polarizing beam splitter using a subwavelength-structured one-dimensional photonic-crystal layer embedded in a high-index prism

H. K. Khanfar and R. M. A. Azzam  »View Author Affiliations


Applied Optics, Vol. 48, Issue 27, pp. 5121-5126 (2009)
http://dx.doi.org/10.1364/AO.48.005121


View Full Text Article

Enhanced HTML    Acrobat PDF (711 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An iterative procedure for the design of a polarizing beam splitter (PBS) that uses a form-birefringent, subwavelength-structured, one-dimensional photonic-crystal layer (SWS 1-D PCL) embedded in a high-index cubical prism is presented. The PBS is based on index matching and total transmission for the p polarization and total internal reflection for the s polarization at the prism–PCL interface at 45 ° angle of incidence. A high extinction ratio in reflection ( > 50 dB ) over the 4 12 μm IR spectral range is achieved using a SWS 1-D PCL of ZnTe embedded in a ZnS cube within an external field of view of ± 6.6 and in the presence of grating filling factor errors of up to ± 10 % . Comparable results, but with wider field of view, are also obtained with a Ge PCL embedded in a Si prism.

© 2009 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(230.1360) Optical devices : Beam splitters
(260.5430) Physical optics : Polarization
(310.1620) Thin films : Interference coatings

ToC Category:
Optical Devices

History
Original Manuscript: July 16, 2009
Revised Manuscript: August 22, 2009
Manuscript Accepted: August 24, 2009
Published: September 10, 2009

Citation
H. K. Khanfar and R. M. A. Azzam, "Broadband IR polarizing beam splitter using a subwavelength-structured one-dimensional photonic-crystal layer embedded in a high-index prism," Appl. Opt. 48, 5121-5126 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-27-5121


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Bennett, “Polarization,” in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, and W.L.Wolfe, eds. (McGraw-Hill, 1995), Vol. I, Chap. 5.
  2. H. A. Macleod, Thin Film Optical Filters, 2nd ed. (McGraw-Hill, 1986). [CrossRef]
  3. J. Mouchart, J. Begel, and E. Duda, “Modified MacNeille cube polarizer for a wide angular field,” Appl. Opt. 28, 2847-2853 (1989). [CrossRef] [PubMed]
  4. L. Li and J. A. Dobrowolski, “Visible broadband, wide-angle, thin-film multilayer polarizing beam splitter,” Appl. Opt. 35, 2221-2225 (1996). [CrossRef] [PubMed]
  5. L. Li and J. A. Dobrowolski, “High-performance thin film polarizing beam splitter operating at angles greater than the critical angle,” Appl. Opt. 39, 2754-2771 (2000). [CrossRef]
  6. S. R. Perla and R. M. A. Azzam, “Wide-angle, high-extinction-ratio, infrared polarizing beam splitters using frustrated total internal reflection by an embedded centrosymmetric multilayer,” Appl. Opt. 46, 4604-4612 (2007). [CrossRef] [PubMed]
  7. H. Haidner, P. Kipfer, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, M. Collischon, A. Lang, and J. Hutfless, “Polarizing reflection grating beamsplitter for the 10.6 μm wavelength,” Opt. Eng. 32, 1860-1865 (1993). [CrossRef]
  8. A. G. Lopez and H. G. Craighead, “Wave-plate polarizing beam splitter based on form-birefringent multilayer grating,” Opt. Lett. 23, 1627-1629 (1998). [CrossRef]
  9. J. Zheng, C. Zhou, J. Feng, and B. Wang, “Polarizing beam splitter of deep-etched triangular-groove fused-silica gratings,” Opt. Lett. 33, 1554-1556 (2008). [CrossRef] [PubMed]
  10. D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickman, “Photonic crystal polarizers and polarizing beam splitters,” J. Appl. Phys. 93, 9429-9431 (2003). [CrossRef]
  11. O. Kilic, S. Fan, and O. Solgaard, “Analysis of guided-resonance-based polarization beam splitting in photonic crystal slabs,” J. Opt. Soc. Am. A 25, 2680-2692 (2008).
  12. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings: conical diffraction and antireflection designs,” Appl. Opt. 33, 2695-2706 (1994). [CrossRef] [PubMed]
  13. W. J. Tropf, M. E. Thomas, and T. J. Harris, “Properties of crystals and glasses,” in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, eds. (McGraw-Hill, 1995), Vol. II, Chap. 33.
  14. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1987), Section 4.7.3.
  15. M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385-1392 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited