OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 27 — Sep. 20, 2009
  • pp: 5143–5154

Influence of molecular scattering models on aerosol optical properties measured by high spectral resolution lidar

Bing-Yi Liu, Michael Esselborn, Martin Wirth, Andreas Fix, De-Cang Bi, and Gerhard Ehret  »View Author Affiliations


Applied Optics, Vol. 48, Issue 27, pp. 5143-5154 (2009)
http://dx.doi.org/10.1364/AO.48.005143


View Full Text Article

Enhanced HTML    Acrobat PDF (1388 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The influence of molecular scattering models on aerosol optical properties measured by high spectral resolution lidar (HSRL) is experimentally investigated and theoretically evaluated. The measurements analyzed in this study were made during three field campaigns by the German Aerospace Center airborne HSRL. The influence of the respective theoretical model on spaceborne HSRL retrievals is also estimated. Generally, the influence on aerosol extinction coefficient can be neglected for both airborne and spaceborne HSRLs. However, the influence on aerosol backscatter coefficient depends on aerosol concentration and is larger than 3% (6%) at ground level for airborne (spaceborne) HSRLs, which is considerable for the spaceborne HSRL, especially when the aerosol concentration is low. A comparison of the HSRL measurements and coordinated ground-based sunphotometer measurements shows that the influence of the model is observable and comparable to the measurement error of the lidar system.

© 2009 Optical Society of America

OCIS Codes
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(010.3640) Atmospheric and oceanic optics : Lidar
(280.1100) Remote sensing and sensors : Aerosol detection
(290.5870) Scattering : Scattering, Rayleigh

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: February 17, 2009
Revised Manuscript: September 1, 2009
Manuscript Accepted: September 2, 2009
Published: September 11, 2009

Citation
Bing-Yi Liu, Michael Esselborn, Martin Wirth, Andreas Fix, De-Cang Bi, and Gerhard Ehret, "Influence of molecular scattering models on aerosol optical properties measured by high spectral resolution lidar," Appl. Opt. 48, 5143-5154 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-27-5143


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Romanou, B. Liepert, G. A. Schmidt, W. B. Rossow, R. A. Ruedy, and Y. Zhang, “20th century changes in surface solar irradiance in simulations and observations,” Geophys. Res. Lett. 34, L05713 (2007). [CrossRef]
  2. J. D. Spinhirne, S. P. Palm, W. D. Hart, D. L. Hlavka, and E. J. Welton, “Cloud and aerosol measurements from GLAS: Overview and initial results,” Geophys. Res. Lett. 32, L22S03 (2005). [CrossRef]
  3. B. E. Schutz, H. J. Zwally, C. A. Shuman, D. Hancock, and J. P. DiMarzio, “Overview of the ICESat Mission,” Geophys. Res. Lett. 32, L21S01 (2005). [CrossRef]
  4. D. M. Winker, W. H. Hunt, and C. A. Hostetler, “Status and performance of the CALIOP lidar,” Proc. SPIE 5575, 8-15(2004). [CrossRef]
  5. D. M. Winker, J. R. Pelon, and M. P. McCormick, “The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE 4893, 1-11 (2003). [CrossRef]
  6. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211-220 (1981). [CrossRef]
  7. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652-653 (1984). [CrossRef]
  8. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22, 3716-3724 (1983). [CrossRef]
  9. H. Shimizu, S. A. Lee, and C. Y. She, “High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters,” Appl. Opt. 22, 1373-1381 (1983). [CrossRef]
  10. R. J. Alvarez II, L. M. Caldwell, Y. H. Li, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar measurement of tropospheric backscatter-ratio with barium atomic blocking filters,” J. Atmos. Ocean. Technol. 7, 876-881(1990). [CrossRef]
  11. P. Piironen and E. W. Eloranta, “Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter,” Opt. Lett. 19, 234-236 (1994). [CrossRef]
  12. Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38, 1661-1670 (1999). [CrossRef]
  13. J. W. Hair, L. M. Caldwell, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt. 40, 5280-5294 (2001). [CrossRef]
  14. J. W. Hair, C. A. Hostetler, R. A. Ferrare, A. L. Cook, and D. B. Harper, “The NASA Langley airborne high spectral resolution lidar for measurements of aerosols and clouds,” in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (2006), pp. 411-414.
  15. J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47, 6734-6752(2008). [CrossRef]
  16. U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, 8125 (2002). [CrossRef]
  17. M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47, 346-358(2008). [CrossRef]
  18. M. Esselborn, M. Wirth, A. Fix, B. Weinzierl, K. Rasp, M. Tesche, and A. Petzold, “Spatial distribution and optical properties of Saharan dust observed by airborne high spectral resolution lidar during SAMUM 2006,” Tellus B 61, 131-143(2009). [CrossRef]
  19. M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B. 96, 201-213 (2009). [CrossRef]
  20. M. Endemann, P. Dubock, P. Ingmann, R. Wimmer, D. Morançais, and D. Demuth, “The ADM-AEOLUS mission--the first wind lidar in space,” in Proceedings of 22nd International Laser Radar Conference, ESA SP-561(2) (European Space Agency, 2004), pp. 953-956.
  21. European Space Agency, “ADM-Aeolus, science report,” ESA SP-1311 (European Space Research and Technology Centre, 2008).
  22. European Space Agency, “Atmospheric dynamics mission, report for mission selection,” ESA SP-1233(4) (European Space Research and Technology Centre, 1999).
  23. A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurements,” Bull. Am. Meteorol. Soc. 86, 73-87 (2005). [CrossRef]
  24. A. Ansmann, U. Wandinger, O. Le Rille, D. Lajas, and A. G. Straume, “Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations,” Appl. Opt. 46, 6606-6622 (2007). [CrossRef]
  25. P. Flamant, J. Cuesta, M.-L. Denneulin, A. Dabas, and D. Huber, “ADM-Aeolus retrieval algorithms for aerosol and cloud products,” Tellus A 60, 273-288 (2008). [CrossRef]
  26. European Space Agency, “Earth Clouds, Aerosols, and Radiation Explorer,” ESA SP-1279(1) (European Space Research and Technology Centre, 2004).
  27. Y. Durand, A. Hélière, J.-L. Bézy, and R. Meynart, “The ESA EarthCARE mission: results of the ATLID instrument pre-developments,” Proc. SPIE 6750, 675015 (2007). [CrossRef]
  28. A. Young, “Rayleigh scattering,” Appl. Opt. 20, 533-535(1981). [CrossRef]
  29. A. Young, “Rayleigh scattering,” Phys. Today 35, 42-48 (1982). [CrossRef]
  30. C. Y. She, “Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars,” Appl. Opt. 40, 4875-4884 (2001). [CrossRef]
  31. G. Tenti, C. Boley, and R. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285-290 (1974). [CrossRef]
  32. X. Pan, M. Shneider, and R. Miles, “Coherent Rayleigh-Brillouin scattering in molecular gases,” Phys. Rev. A 69, 033814 (2004). [CrossRef]
  33. Q. Zheng, “Model for polarized and depolarized Rayleigh-Brillouin scattering spectra in molecular gases,” Opt. Express 15, 14257-14265 (2007). [CrossRef]
  34. A. Young and G. Kattawar, “Rayleigh-scattering line profiles,” Appl. Opt. 22, 3668-3670 (1983). [CrossRef]
  35. L. Landau and G. Placzek, “Structure of the undisplaced scattering line,” Phys. Z. Sowiet. Un. 5, 172 (1934).
  36. J. N. Forkey, “Development and demonstration of filtered Rayleigh scattering--a laser based flow diagnostic for planar measurement of velocity, temperature and pressure,” Ph.D. dissertation (Princeton University, 1996).
  37. M. Shneider, Department of Mechanical and Aerospace Engineering, Princeton University, New Jersey 08544, USA (personal communication, 2009).
  38. G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, “AFGL atmospheric constituent profiles (0-120 km),” AFGL-TR-86-0110 (Air Force Geophysics Laboratory, 1986).
  39. T. Pain, P. Martimort, P. Tanguy, W. Leibrandt, and A. Hélière, “ATLID: atmospheric lidar four clouds and aerolsol observations combined with radar sounding,” in Proceedings of the 5th International Conference on Space Optics, B. Warmbein ed., ESA SP-554 (European Space Agency, 2004), pp. 19-23.
  40. European Space Agency, “WALES--Water Vapour Lidar Experiment in Space,” ESA SP-1279(3) (European Space Research and Technology Centre, 2004).
  41. S. Gerstenkorn and P. Luc, Atlas du Spectre D'Absorption de la Molecule D'Iode (CNRS, 1978).
  42. R. Miles, W. Lempert, and J. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12, R33-R51 (2001). [CrossRef]
  43. A. Savitzky and M. Golay, “Smoothing and differentiation of data by simplified least square procedures,” Anal. Chem. 36, 1627-1639 (1964). [CrossRef]
  44. S. Palm, W. Hart, D. Hlavka, E. Welton, A. Mahesh, and J. Spinhirne, “GLAS atmospheric data products, algorithm theoretical basis document, version 4.2,” (Goddard Space Flight Center, 2002, last accessed 2 June 2009) http://www.csr.utexas.edu/glas/pdf/glasatmos.atbdv4.2.pdf.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited