OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 27 — Sep. 20, 2009
  • pp: 5164–5175

Optical waveguide grating couplers: 2nd-order and 4th-order finite-difference time-domain analysis

Aristeides D. Papadopoulos and Elias N. Glytsis  »View Author Affiliations


Applied Optics, Vol. 48, Issue 27, pp. 5164-5175 (2009)
http://dx.doi.org/10.1364/AO.48.005164


View Full Text Article

Enhanced HTML    Acrobat PDF (812 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Output optical waveguide grating couplers are rigorously analyzed using the 2-order and the 4-order finite-difference time-domain (FDTD) method in conjunction with the total field/scattered field (TF-SF) approach and special averaging and regularization techniques for the mitigation of permittivity discontinuities. Volume-holographic and surface-relief grating couplers are analyzed for both TE and TM polarizations. The 2- and 4-order FDTD results are compared in terms of computational efficiency and accuracy. In addition, the FDTD results are compared to the approximate ones obtained by the rigorous coupled-wave analysis in conjunction with the leaky modes.

© 2009 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1950) Diffraction and gratings : Diffraction gratings
(050.1960) Diffraction and gratings : Diffraction theory
(050.7330) Diffraction and gratings : Volume gratings
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Diffraction and Gratings

History
Original Manuscript: March 16, 2009
Revised Manuscript: June 16, 2009
Manuscript Accepted: August 13, 2009
Published: September 11, 2009

Citation
Aristeides D. Papadopoulos and Elias N. Glytsis, "Optical waveguide grating couplers: 2nd-order and 4th-order finite-difference time-domain analysis," Appl. Opt. 48, 5164-5175 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-27-5164


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. H. Ho and E. H. Lee, “Focusing-grating-coupler arrays for uniform and efficient signal distribution in a backboard optical interconnect,” Appl. Opt. 34, 5913-5919 (1995). [CrossRef]
  2. R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Britow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780-793 (2000). [CrossRef]
  3. Y. Leng, V. Yun, L. Lucas, W. N. Herman, and J. Goldhar, “Dispensed polymer waveguides and laser-fabricated couplers for optical interconnects on printed circuit boards,” Appl. Opt. 46, 602-610 (2007). [CrossRef] [PubMed]
  4. S. Ura, T. Suhara, H. Hishihara, and J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. 4, 913-918 (1986). [CrossRef]
  5. S. Ura, R. Nishida, T. Suhara, and H. Nishihara, “Wavelength selective coupling among three vertically integrated waveguides via supermode by a pair of grating couplers,” IEEE Photon. Technol. Lett. 13, 133-135 (2001). [CrossRef]
  6. S. Ura, R. Nishida, T. Suhara, and H. Nishihara, “Wavelength selective coupling among vertically integrated thin-film waveguides via supermode by a pair of grating couplers,” IEEE Photon. Technol. Lett. 13, 678-680 (2001). [CrossRef]
  7. J. Backlund, J. Bengtsson, C.-F. Carlstrom, and A. Larsson, “Waveguide input grating couplers for wavelength-division multiplexing and wavelength encoding,” IEEE Photon. Technol. Lett. 13, 815-817 (2001). [CrossRef]
  8. M. Wiki and R. E. Kunz, “Wavelength-interrogated optical sensors for biochemical applications,” Opt. Lett. 25, 463-465(2000). [CrossRef]
  9. X. Wei, C. Kang, M. Liscidini, G. Rong, S. T. Retterer, M. Patrini, J. E. Sipe, and S. M. Weiss, “Grating couplers on porous silicon planar waveguides for sensing applications,” J. Appl. Phys. 104, 123113 (2008). [CrossRef]
  10. S. T. Peng, T. Tamir, and H. L. Bertoni, “Leaky-wave analysis of optical periodic couplers,” Electron. Lett. 9, 150-152 (1973). [CrossRef]
  11. S. T. Peng, T. Tamir, and H. L. Bertoni, “Theory of periodic dielectric waveguides,” IEEE Trans. Microwave Theory Tech. 23, 123 (1975). [CrossRef]
  12. T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235-254 (1977). [CrossRef]
  13. N. Izhaky and A. Hardy, “Analysis of grating-assisted backward coupling employing the unified couple-mode formalism,” J. Opt. Soc. Am. A 16, 1303-1311 (1999). [CrossRef]
  14. N. Izhaky and A. Hardy, “Characteristics of grating-assisted couplers,” Appl. Opt. 38, 6987-6993 (1999). [CrossRef]
  15. P.-P. Borsboone and H. J. Frankena, “Field analysis of two-dimensional integrated optical gratings,” J. Opt. Soc. Am. A 12, 1134-1141 (1995). [CrossRef]
  16. P.-P. Borsboone and H. J. Frankena, “Field analysis of two-dimensional grating couplers,” J. Opt. Soc. Am. A 12, 1142-1146 (1995). [CrossRef]
  17. P. G. Dinesen and J. S. Hesthaven, “Fast and accurate modeling of waveguide grating couplers,” J. Opt. Soc. Am. A 17, 1565-1572 (2000). [CrossRef]
  18. P. G. Dinesen and J. S. Hesthaven, “Fast and accurate modeling of waveguide grating couplers, II. Three-dimensional vectorial case,” J. Opt. Soc. Am. A 18, 2876-2885(2001). [CrossRef]
  19. P. Lalanne and E. Silberstein, “Fourier-modal methods applied to waveguide computational problems,” Opt. Lett. 25, 1092-1094 (2000). [CrossRef]
  20. E. Silberstein, P. Lalanne, J.-P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18, 2865-2875 (2001). [CrossRef]
  21. Q. Cao, P. Lalanne, and J.-P. Hugonin, “Stable and efficient Bloch-mode computational method for one-dimensional grating waveguides,” J. Opt. Soc. Am. A 19, 335-338(2002). [CrossRef]
  22. H. Kogelnik and T. P. Sosnowski, “Holographic thin film couplers,” Bell. Syst. Tech. J. 49, 1602-1608 (1970).
  23. J. H. Harris, R. K. Winn, and D. G. Dalgoutte, “Theory and design of periodic couplers,” Appl. Opt. 11, 2234-2241(1972). [CrossRef] [PubMed]
  24. K. Ogawa and W. S. C. Chang, “Analysis of holographic thin film grating coupler,” Appl. Opt. 12, 2167-2171 (1973). [CrossRef] [PubMed]
  25. W. Y. Wang and T. J. DiLaura, “Bragg effect waveguide coupler analysis,” Appl. Opt. 16, 3230-3236 (1977). [CrossRef] [PubMed]
  26. M. L. Jones, R. P. Kenan, and C. M. Verber, “Rectangular characteristics gratings for waveguide input and output coupling,” Appl. Opt. 34, 4149-4158 (1995). [CrossRef] [PubMed]
  27. S. M. Schultz, E. N. Glytsis, and T. K. Gaylord, “Design of a high-efficiency volume grating coupler for line focusing,” Appl. Opt. 37, 2278-2287 (1998). [CrossRef]
  28. R. A. Villalaz, E. N. Glytsis, and T. K. Gaylord, “Volume grating couplers: polarization and loss effect,” Appl. Opt. 41, 5223-5229 (2002). [CrossRef] [PubMed]
  29. J. K. Butler, W. E. Ferguson, Jr., G. A. Evans, P. J. Stabile, and A. Rosen, “A boundary element technique applied to the analysis of waveguides with periodic surface corrugations,” IEEE J. Quantum Electron. 28, 1701-1709 (1992). [CrossRef]
  30. S.-D. Wu and E. N. Glytsis, “Volume holographic grating couplers: rigorous analysis by use of the finite-difference frequency-domain method,” Appl. Opt. 43, 1009-1023 (2004). [CrossRef] [PubMed]
  31. J. Liu, X. Yuan, C. Huang, S. Peng, and D. Huang, “Analysis of light field of waveguide grating couplers using the FDTD method,” Proc. SPIE 4927, 245-248 (2002). [CrossRef]
  32. C. Huang, J. Liu, W. Hu, and J. Sun, “FDTD analysis of optical field distribution in waveguide grating coupler,” Proc. SPIE 6783, 67834 (2007). [CrossRef]
  33. B. Wang, J. Jiang, and G. P. Nordin, “Compact slanted grating couplers,” Opt. Express 12, 3313-3326 (2004). [CrossRef] [PubMed]
  34. B. Wang, J. Jiang, and G. P. Nordin, “Embedded slanted grating for vertical coupling between fibers and silicon-on-insulator planar waveguides,” IEEE Photon. Technol. Lett. 17, 1884-1886 (2005). [CrossRef]
  35. B. Wang, J. Jiang, D. M. Chambers, J. Cai, and G. P. Nordin, “Stratified waveguide grating coupler for normal fiber incidence,” Opt. Lett. 30, 845-847 (2005). [CrossRef] [PubMed]
  36. P. Cheben, D.-X. Xu, S. Janz, and A. Densmore, “Subwavelength waveguide grating for mode conversion and light coupling in integrated optics,” Opt. Express 14, 4695-4702(2006). [CrossRef] [PubMed]
  37. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite- Difference Time-Domain Method, 2nd and 3rd eds. (Artech House, 2000 and 2005).
  38. S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propag. 44, 1630-1639 (1996). [CrossRef]
  39. H. Kogelnik, “Theory of optical waveguides,” in Guided-Wave Optoelectronics, T.Tamir, ed. (Springer-Verlag, 1988), pp. 7-88.
  40. L. Gurel and U. Oguz, “Signal-processing techniques to reduce the sinusoidal steady-state error in the FDTD method,” IEEE Trans. Antennas Propag. 48, 585-589 (2000). [CrossRef]
  41. A. D. Papadopoulos and E. N. Glytsis, “Finite-difference-time-domain analysis of finite-number-of-periods holographic and surface-relief gratings,” Appl. Opt. 47, 1981-1994 (2008). [CrossRef] [PubMed]
  42. T. T. Zygiridis and T. D. Tsiboukis, “Low-dispersion algorithms based on the higher order (2,4) FDTD method,” IEEE Trans. Microwave Theory Tech. 52, 1321-1327 (2004). [CrossRef]
  43. K. P. Hwang and A. C. Cangellaris, “Effective permittivities for second-order accurate FDTD equations at dielectric interfaces,” IEEE Microwave Wireless Comp. Lett. 11, 158-160(2001). [CrossRef]
  44. E. Kashdan and E. Turkel, “High-order accurate modeling of electromagnetic wave propagation across media-grid conforming bodies,” J. Comput. Phys. 218, 816-835 (2006). [CrossRef]
  45. U. Anderson, “Time domain methods for the Maxwell equations,” Ph.D. dissertation (Royal Institute of Technology Sweden, 2001).
  46. T. Hirono and Y. Yoshikuni, “Accurate modeling of dielectric interfaces by the effective permittivities for the fourth-order symplectic finite-difference time-domain method,” Appl. Opt. 46, 1514-1524 (2007). [CrossRef] [PubMed]
  47. T. Hirono, Y. Yoshikuni, and Y. Shibata, “Third-order effective permittivities for the 4th-order FDTD method in the 2-D TM polarization case,” Proc. SPIE 4646, 630-640 (2002). [CrossRef]
  48. S.-D. Wu and E. N. Glytsis, “Finite-number-of-periods holographic gratings with finite-width incident beams: Analysis using the finite-difference frequency domain method,” J. Opt. Soc. Am. A 19, 2018-2029 (2002). [CrossRef]
  49. H. Kogelnik, “Coupled wave theory for the thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).
  50. P. G. Petropoulos, “Phase error control for FD-TD methods of second and fourth order accuracy,” IEEE Trans. Antennas Propag. 42, 859-862 (1994). [CrossRef]
  51. S. M. Schultz and E. N. Glytsis, “Design, fabrication and performance of preferential-order volume grating waveguide couplers,” Appl. Opt. 39, 1223-1232 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited