OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 27 — Sep. 20, 2009
  • pp: 5197–5204

Characterizing large-area electro-optic crystals toward two-dimensional real-time terahertz imaging

Fanzhen Meng, Mark D. Thomson, Volker Blank, Wolff von Spiegel, Torsten Löffler, and Hartmut G. Roskos  »View Author Affiliations


Applied Optics, Vol. 48, Issue 27, pp. 5197-5204 (2009)
http://dx.doi.org/10.1364/AO.48.005197


View Full Text Article

Enhanced HTML    Acrobat PDF (689 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have characterized the homogeneity of large-area ( > 10 m m × 10 m m ) Cd Te ( 110 ) and Zn Te ( 110 ) crystals using a raster electro-optic scanning method to assess their usability in two-dimensional electro- optic terahertz (THz) imaging with parallel read out. The spatial variation in the detected THz signal (at 0.2 and 0.645 THz , respectively) is due to nonuniform residual birefringence and scattering. For CdTe, this depends critically on the growth method, and has an important contribution from slip planes in the crystals, as is evident in the scanned images. For the highest-quality Cd Te ( 110 ) crystals investigated, the rms signal variations are less than 15%, comparable to those for Zn Te ( 110 ) . For electro-optic scanning, we introduce a hybrid measurement system based on a fs Nd:glass laser and a continuous-wave elec tronic THz source.

© 2009 Optical Society of America

OCIS Codes
(160.2100) Materials : Electro-optical materials
(300.6495) Spectroscopy : Spectroscopy, teraherz
(110.6795) Imaging systems : Terahertz imaging

ToC Category:
Imaging Systems

History
Original Manuscript: June 5, 2009
Manuscript Accepted: August 13, 2009
Published: September 15, 2009

Citation
Fanzhen Meng, Mark D. Thomson, Volker Blank, Wolff von Spiegel, Torsten Löffler, and Hartmut G. Roskos, "Characterizing large-area electro-optic crystals toward two-dimensional real-time terahertz imaging," Appl. Opt. 48, 5197-5204 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-27-5197


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications--explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266-S280 (2005). [CrossRef]
  2. D. Zimdars, J. S. White, G. Stuk, A. Chernovsky, G. Fichter, and S. Williamson, “Large area terahertz imaging and non-destructive evaluation applications,” presented at the Fourth International Workshop on Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization, U. Mass. Dartmouth, N. Dartmouth, Massachusetts, 19 June 2006.
  3. R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47, 3853-3863 (2002). [CrossRef] [PubMed]
  4. M. Berryman and T. Rainsford, “Classification of Terahertz data as a tool for the detection of cancer,” Proc. SPIE 6416, 64160X-1-10 (2006).
  5. A. M. Sinyukov, A. Bandyopadhyay, A. Sengupta, R. B. Barat, D. E. Gary, Z. H. Michalopoulou, D. Zimdars, and J. F. Federici, “Terahertz interferometric imaging of a concealed object,” Proc. SPIE 6373, 63730K-1-8 (2006).
  6. N. Hasegawa, T. Löffler, M. D. Thomson, and H. G. Roskos, “Remote identification of protrusions and dents on surfaces by terahertz reflectometry with spatial beam filtering and out-of-focus detection,” Appl. Phys. Lett. 83, 3996-3998 (2003). [CrossRef]
  7. B. Hils, M. D. Thomson, T. Löffler, W. von Spiegel, C. am Weg, H. G. Roskos, P. de Maagt, D. Doyle, and R. D. Geckeler, “Terahertz profilometry at 600 GHz with 0.5 μm depth resolution,” Opt. Express 16, 11289-11293 (2008). [CrossRef] [PubMed]
  8. T. Löffler, T. May, C. am Weg, A. Alcin, B. Hils, and H. G. Roskos, “Continuous-wave terahertz imaging with a hybrid system,” Appl. Phys. Lett. 90, 091111-1-3 (2007). [CrossRef]
  9. T. May, C. am Weg, A. Alcin, B. Hils, T. Löffler, and H. G. Roskos, “Towards an active real-time THz camera: first realization of a hybrid system,” Proc. SPIE 6549, 654907-1-7(2007).
  10. K. L. Nguyen, M. L. Johns, L. F. Gladden, C. H. Worrall, P. Alexander, H. E. Beere, M. Pepper, D. A. Ritchie, J. Alton, S. Barbieri, and E. H. Linfield, “Three-dimensional imaging with a terahertz quantum cascade laser,” Opt. Express 14, 2123-2129 (2006). [CrossRef] [PubMed]
  11. J. Darmo, V. Tamosiunas, G. Fasching, J. Kröll, and K. Unterrainer, “Imaging with a Terahertz quantum cascade laser,” Opt. Express 12, 1879-1884 (2004). [CrossRef] [PubMed]
  12. K. Imai, K. Kawase, J. Shikata, H. Minamide, and H. Ito, “Injection-seeded terahertz-wave parametric oscillator,” Appl. Phys. Lett. 78, 1026-1028 (2001). [CrossRef]
  13. K. Kawase, J. Shikata, K. Imai, and H. Ito, “Transform-limited, narrow-linewidth, terahertz-wave parametric generator,” Appl. Phys. Lett. 78, 2819-2821 (2001). [CrossRef]
  14. H. Takahashi, A. Quema, M. Goto, S. Ono, and N. Sarukura, “Terahertz radiation mechanism from femtosecond-laser-irradiated InAs(100) surface,” Jpn. J. Appl. Phys. 42, L1259-L1261 (2003). [CrossRef]
  15. G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261, 114-117 (2006). [CrossRef]
  16. G. Molis, R. Adomavičius, A. Krotkus, K. Bertulis, L. Giniūnas, J. Pocius, and R. Danielius, “Terahertz time-domain spectroscopy system based on femtosecond Yb:KGW laser,” Electron Lett. 43, 190-191 (2007). [CrossRef]
  17. T. Löffler, T. Hahn, M. Thomson, F. Jacob, and H. Roskos, “Large-area electro-optic ZnTe terahertz emitters,” Opt. Express 13, 5353-5362 (2005). [CrossRef] [PubMed]
  18. T. Loeffler, M. Kress, M. Thomson, T. Hahn, N. Hasegawa, and H. G. Roskos, “Comparative performance of terahertz emitters in amplifier-laser-based systems,” Semicond. Sci. Technol. 20, S134-S141 (2005). [CrossRef]
  19. C. am Weg, W. von Spiegel, R. Henneberger, R. Zimmermann, T. Loeffler, and H. G. Roskos, “Fast active THz camera with range detection by frequency modulation,” Proc. SPIE 7215, 72150F-1-8 (2009).
  20. A. Lisauskas, W. von Spiegel, S. B. Tombet, A. E. Fatimy, D. Coquillat, F. Teppe, N. Dyakonova, W. Knap, and H. G. Roskos, “Terahertz imaging with GaAs field-effect transistors,” Electron. Lett. 44, 408-409 (2008). [CrossRef]
  21. A. Lisauskas, U. Pfeiffer, E. Öjefors, P. H. Bolivar, D. Glaab, and H. G. Roskos, “Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors,” J. Appl. Phys. 105, 114511 (2009).
  22. T. Hattori and M. Sakamoto, “Deformation corrected real-time terahertz imaging,” Appl. Phys. Lett. 90, 261106 (2007). [CrossRef]
  23. M. Usami, T. Iwamoto, R. Fukasawa, M. Tani, M. Watanabe, and K. Sakai, “Development of a THz spectroscopic imaging system,” Phys. Med. Biol. 47, 3749-3753 (2002). [CrossRef] [PubMed]
  24. Z. Jiang and X.-C. Zhang, “Terahertz imaging via electrooptic effect,” IEEE Trans. Microwave Theory Tech. 47, 2644-2650(1999). [CrossRef]
  25. Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026-1028 (1996). [CrossRef]
  26. Z. Jiang, X. G. Xu, and X.-C. Zhang, “Improvement of terahertz imaging with a dynamic subtraction technique,” Appl. Opt. 39, 2982-2987 (2000). [CrossRef]
  27. B. Pradarutti, G. Matthäus, C. Brückner, J. Limpert, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Electrooptical sampling of ultra-short THz pulses by fs-laser pulses at 1060 nm,” Appl. Phys. B 85, 59-62 (2006). [CrossRef]
  28. B. Pradarutti, G. Matthäus, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Highly efficient terahertz electro-optic sampling by material optimization at 1060 nm,” Opt. Commun. 281, 5031-5035 (2008). [CrossRef]
  29. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321-2323(1996). [CrossRef]
  30. C. Winnewisser, P. Uhd Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069-3071(1997). [CrossRef]
  31. A. Syouji, S. Saito, M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, M. Yoshida, and K. Sakai, “THz radiation from CdTe crystal by differential frequency generation under phase-matching conditions at 1000 nm system,” 2005 International Quantum Electronics Conference, 1336-1337 (IEEE, 2005). [CrossRef]
  32. A. Syouji, S. Saito, K. Sakai, M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Evaluation of a terahertz wave spectrum and construction of a terahertz wave-sensing system using a yb-doped fiber laser,” J. Opt. Soc. Am. B 24, 2006-2012 (2007). [CrossRef]
  33. B. Pradarutti, R. Mueller, G. Matthaeus, C. Brueckner, S. Riehemann, G. Notni, S. Nolte, and A. Tuennermann, “Multichannel balanced electro-optic detection for terahertz imaging,” Opt. Express 15, 17652-17660 (2007). [CrossRef] [PubMed]
  34. G. Chang, C. J. Divin, C. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “Power scalable compact THz system based on an ultrafast Yb-doped fiber amplifier,” Opt. Express 14, 7909-7913 (2006). [CrossRef] [PubMed]
  35. M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett. 85, 3974-3976 (2004). [CrossRef]
  36. D. Molter, M. Theuer, and R. Beigang, “Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate,” Opt. Express 17, 6623-6628(2009). [CrossRef] [PubMed]
  37. A. Milani, S. M. Pietralunga, A. Sangiovanni, A. Zappettini, and M. Martinelli, “Two-dimensional mapping of residual stress-induced birefringence in differently-grown semiconductors for optical communication applications,” Mater. Sci. Eng. A 288, 205-208 (2000). [CrossRef]
  38. P. Hlídek, J. Bok, J. Franc, and R. Grill, “Refractive index of CdTe: spectral and temperature dependence,” J. Appl. Phys. 90, 1672-1674 (2001). [CrossRef]
  39. M. Schall, H. Helm, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. J. Infrared Milli. 20, 595-604 (1999). [CrossRef]
  40. M. Schall, M. Walther, and P. Uhd Jepsen, “Fundamental and second-order phonon processes in CdTe and ZnTe,” Phys. Rev. B 64, 094301 (2001). [CrossRef]
  41. E. D. Palik, “Cadmium telluride (CdTe),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).
  42. Y. Marfaing, “Models of donor impurity compensation in cadmium telluride,” Rev. Phys. Appl. 12, 211-217 (1977). [CrossRef]
  43. P. Fochuk, O. Panchuk, P. Feychuk, L. Shcherbak, A. Savitskyi, O. Parfenyuk, M. Ilashchuk, M. Hage-Ali, and P. Siffert, “Indium dopant behaviour in CdTe single crystals,” Nucl. Instrum. Methods Phys. Res. 458, 104-112 (2001). [CrossRef]
  44. M. Auslender and S. Hava, “Free carrier contribution to dynamic dielectric function of heavily doped semiconductors,” Phys. Stat. Sol. (b) 174, 565-574 (1992). [CrossRef]
  45. S. E. Ralph, S. Perkowitz, N. Katzenellenbogen, and D. Grischkowsky, “Terahertz spectroscopy of optically thick multilayered semiconductor structures,” J. Opt. Soc. Am. B 11, 2528-2532 (1994). [CrossRef]
  46. R. Triboulet, “CdTe and CdZnTe Growth,” in Crystal Growth Technology, H. J. Scheel and T. Fukuda, eds. (Wiley, 2003). [CrossRef]
  47. N. Chevalier, P. Dusserre, J. Garandet, and T. Duffar, “Dewetting application to CdTe single crystal growth on earth,” J. Cryst. Growth 261, 590-594 (2004). [CrossRef]
  48. “II-VI semiconductors for optoelectronics: CdS, CdSe, CdTe,” in Springer Handbook of Electronic and Photonic Materials, S. Kasap and P. Capper, eds. (Springer, 2006).
  49. P. Rudolph, A. Engel, I. Schentke, and A. Grochocki, “Distribution and genesis of inclusions in CdTe and (Cd,Zn)Te single crystals grown by the Bridgman method and by the travelling heater method,” J. Cryst. Growth 147, 297-304(1995). [CrossRef]
  50. A. W. Vere, S. Cole, and D. J. Williams, “The origins of twinning in CdTe,” J. Electron Mater. 12, 551-561 (1983). [CrossRef]
  51. C. Szeles, “CdZnTe and CdTe materials for x-ray and gamma ray radiation detector applications,” Phys. Status Solidi A 241, 783-790 (2004). [CrossRef]
  52. C. Szeles, E. E. Eissler, D. J. Reese, and S. E. Cameron, “Radiation detector performance of CdTe single crystals grown by the conventional vertical Bridgman technique,” Proc. SPIE 3768, 98-106 (1999). [CrossRef]
  53. T. Hattori, K. Ohta, R. Rungsawang, and K. Tukamoto, “Phase-sensitive high-speed THz imaging,” J. Phys. D 37, 770-773 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited