OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 28 — Oct. 1, 2009
  • pp: 5205–5211

All-optical time-delay switch based on grating buildup time of two-wave mixing in a bacteriorhodopsin film

Guiying Chen, Wenqiang Lu, Xuxu Xu, Jianguo Tian, and Chunping Zhang  »View Author Affiliations


Applied Optics, Vol. 48, Issue 28, pp. 5205-5211 (2009)
http://dx.doi.org/10.1364/AO.48.005205


View Full Text Article

Enhanced HTML    Acrobat PDF (344 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate time-delay switches using the first-order dynamic diffraction light of two-beam coupled light with wavelengths of 632.8, 650, 532, and 488 nm in a bacteriorhodopsin film. The optimal wavelengths are selected and the relationship between incident intensity and delay time is discussed. A switch delay time ranging from 3.52 to 12.5 s is presented by the 632.8 nm wavelength , while a delay time ranging from 1.24 to 10.6 s is demonstrated by the 488 nm wavelength . On the other hand, the wavelengths of 532 and 650 nm are not suitable for time-delay switches due to the large variation of first-order diffraction intensity for lower incident intensities.

© 2009 Optical Society of America

OCIS Codes
(090.1970) Holography : Diffractive optics
(230.1150) Optical devices : All-optical devices
(200.6715) Optics in computing : Switching

ToC Category:
Optical Devices

History
Original Manuscript: March 5, 2009
Revised Manuscript: June 30, 2009
Manuscript Accepted: August 28, 2009
Published: September 21, 2009

Virtual Issues
Vol. 4, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Guiying Chen, Wenqiang Lu, Xuxu Xu, Jianguo Tian, and Chunping Zhang, "All-optical time-delay switch based on grating buildup time of two-wave mixing in a bacteriorhodopsin film," Appl. Opt. 48, 5205-5211 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-28-5205


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Okamoto, I. Yamaguchi, and K. Yamagata, “Real-time enhancement of defects in periodic patterns by use of a bacteriorhodopsin film,” Opt. Lett. 22, 337-339 (1997). [CrossRef] [PubMed]
  2. G. E. Dovgalenko, M. Klotz, G. J. Salamo, and G. L. Wood, “Optically induced birefringence in bacteriorhodopsin as an optical limiter,” Appl. Phys. Lett. 68, 287-289 (1996). [CrossRef]
  3. D. Sánchez-de-la-Llave and M. A. Fiddy, “Incoherent-to-coherent conversion and square-law transmission based on photoinduced birefringence in bacteriorhodopsin films,” Appl. Opt. 38, 815-821 (1999). [CrossRef]
  4. Y. H. Huang, S. T. Wu, and Y. Y. Zhao, “Photonic switching based on the photoinduced birefringence in bacteriorhodopsin films,” Appl. Phys. Lett. 84, 2028-2030 (2004). [CrossRef]
  5. M. Sanio, U. Settle, K. Abderle, and N. Hampp, “Optically addressed direct-view display based on bacteriorhodopsin,” Opt. Lett. 24, 379-381 (1999). [CrossRef]
  6. D. N. Rao, C. Yelleswarapu, S.-R. Kothapalli, D. Rao, and B. Kimball, “Self-diffraction in bacteriorhodopsin films for low power optical limiting,” Opt. Express 11, 2848-2853(2003). [CrossRef] [PubMed]
  7. Y. H. Huang, G. Siganakis, M. G. Moharam, and S. T. Wu, “Broadband optical limiter based on nonlinear photoinduced anisotropy in bacteriorhodopsin film,” Appl. Phys. Lett. 85, 5445-5447 (2004). [CrossRef]
  8. C. P. Singh and S. Roy, “All-optical switching in bacteriorhodopsin based on M state dynamics and its application to photonic logic gates,” Opt. Commun. 218, 55-66(2003). [CrossRef]
  9. P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. Cristofano, “Enhancement of photoinduced anisotropy and all-optical switching in Bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888-3890 (2002). [CrossRef]
  10. Y. H. Huang, S. T. Wu, and Y. Y. Zhao, “All-optical switching characteristics in bacteriorhodopsin and its applications in integrated optics,” Opt. Express 12, 895-906 (2004). [CrossRef] [PubMed]
  11. Y. D. Li, Q. Sun, J. G. Tian, and G. Y. Zhang, “Optical Boolean logic based on degenerate multi-wave mixing in bR film,” Opt. Mater. 23, 285-288 (2003). [CrossRef]
  12. G. Y. Chen, C. P. Zhang, Z. X. Guo, J. G. Tian, G. Y. Zhang, and Q. W. Song, “All-optical gate based on bacteriorhodopsin film,” Chin. Phys. 14, 774-778 (2005). [CrossRef]
  13. W. D. Koek, N. Bhattacharya, and J. J. M. Braat, “Holographic simultaneous readout polarization multiplexing based on photoinduced anisotropy in bacteriorhodopsin,” Opt. Lett. 29, 101-103 (2004). [CrossRef] [PubMed]
  14. G. Y. Chen, C. P. Zhang, Z. X. Guo, J. G. Tian, and Q. W. Song, “Time dependent all-optical logic-gates based on two coupled waves in bacteriorhodopsin,” J. Appl. Phys. 98, 044504(2005). [CrossRef]
  15. G. Y. Chen, C. P. Zhang, X. D. Shang, Z. X. Guo, X. Y. Wang, J. G. Tian, and Q. W. Song, “Real-time intensity dependent all-optical switch of reverse image converter from wavelength to wavelength based on bacteriorhodopsin film,” Opt. Commun. 249, 563-568 (2005). [CrossRef]
  16. G. Y. Chen, Z. X. Guo, K. Chen, C. P. Zhang, J. G. Tian, and Q. W. Song, “Time dependent all-optical logic-gates with bacteriorhodopsin,” Optik (Jena) 116, 227-231 (2005). [CrossRef]
  17. G. Yang, G. Y. Chen, X. LiangC. P. Zhang, J. G. Tian, C. M. Zhao, and Q. W. Song, “The influence of the velocity and the size of an object on the quality of an optical novelty filter designed using a bacteriorhodopsin film,” J. Mod. Opt. 53, 1177-1185 (2006) [CrossRef]
  18. C. P. Zhang, G. Y. Chen, X. Wei, Z. Guo, J. Tian, X. Wang, G. Zhang, and Q. W. Song,, “Optical novelty filter using bacteriorhodopsin film,” Opt. Lett. 30, 81-83 (2005). [CrossRef] [PubMed]
  19. G. Y. Chen, Y. Z. Yuan, T. Xu, C. P. Zhang, and Q. W. Song, “All-optical time delay relay based on bacteriorhodopsin,” Opt. Lett. 31, 1531-1533 (2006). [CrossRef] [PubMed]
  20. R. R. Birge, “The nature of the primary photochemical events in rhodopsin and bacteriorhodopsin,” Biochim. Biophys. Acta 1016, 293-327 (1990). [CrossRef] [PubMed]
  21. D. Oesterhelt and W. Stoeckenius, “Rhodopsin-like protein from the purple membrane of halobacterium halobium,” Nature (London) New Biol. 233, 149-152 (1971).
  22. A. V. Koklyushkin, A. E. Korolev, and N. M. Kozhevnikov, “Analysis of the recording efficiency of dynamic gratings in bacteriorhodopsin with the help of differential absorption spectra,” Opt. Spectrosc. 102, 307-313 (2007). [CrossRef]
  23. H. Kogelnik, “Coupled-wave theory of thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).
  24. J. D. Downie and D. T. Smithey, “Measurements of holographic properties of bacteriorhodopsin films,” Appl. Opt. 35, 5780-5789 (1996). [CrossRef] [PubMed]
  25. L. R. Lindvold, H. Imam, and P. S. Ramanujam, “Spatial frequency response and transient anisotropy of bacteriorhodopsin thin films,” Opt. Rev. 2, 32-38 (1995). [CrossRef]
  26. G. Y. Chen, T. Xu, C. P. Zhang, and Q W. Song, “Dynamic diffraction behaviors of bacteriorhodopsin film at 532 nm,” Opt. Commun. 264, 229-234 (2006). [CrossRef]
  27. N. Hammp and T. Juchem, “Improvement of the diffraction efficiency and kinetics of holographic gratings in photochromic media by auxiliary light,” Opt. Lett. 29, 2911-2913 (2004). [CrossRef]
  28. B. L. Yao, J. H. Han, P. Gao, L. J. Chen, Y. L. Wang, and M. Lei, “Influence of auxiliary violet light on holographic kinetics at low and high recording intensities in bacteriorhodopsin film,” Opt. Commun. 281, 2380-2384 (2008). [CrossRef]
  29. G. Y. Chen, C. P. Zhang, T. Xu, J. G. Tian, and Q. W. Song, “the relations between incident intensities and behaviors of two-wave coupled dynamic diffraction in a thick bacteriorhodopsin film,” Opt. Mater. 29, 416-420 (2006). [CrossRef]
  30. G. R. Kumar, B. P. Singh, and K. K. Sharma, “Continuous-wave self-diffraction in dye-doped glasses,” J. Opt. Soc. Am. B 8, 2119-2127 (1991) [CrossRef]
  31. A. Suchocki, G. D. Gilliland, and R. C. Powell, “Four-wave mixing measurements of energy migration and radiationless relaxation processes in alexandrite crystals,” Phys. Rev. B 35, 5830-5840 (1987). [CrossRef]
  32. J. D. Dowine and D. A. Timucin, “Modeling the grating-formation process in thick bacteriorhodopsin films,” Appl. Opt. 37, 2102-2111 (1998). [CrossRef]
  33. G. Y. Chen, X. X. Xu, C. P. Zhang, S. W. Qi, and Q. W. Song, “An all-optical time-delay relay based on a bacteriorhodopsin film,” Chin. Phys. 17, 4218-4225 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited