OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 28 — Oct. 1, 2009
  • pp: 5240–5250

Phase-image-based sparse-gray-level data pages for holographic data storage

Bhargab Das, Joby Joseph, and Kehar Singh  »View Author Affiliations


Applied Optics, Vol. 48, Issue 28, pp. 5240-5250 (2009)
http://dx.doi.org/10.1364/AO.48.005240


View Full Text Article

Enhanced HTML    Acrobat PDF (1233 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a method for implementation of gray-scale sparse block modulation codes with a single spatial light modulator in phase mode for holographic data storage. Sparse data pages promise higher recording densities with reduced consumption of the dynamic range of the recording material and reduced interpixel cross talk. A balanced sparse-gray-level phase data page gives a homogenized Fourier spectrum that improves the interference efficiency between the signal and the reference beams. Construction rules for sparse three-gray-level phase data pages, readout methods, and interpixel cross talk are discussed extensively. We also explore theoretically the potential storage density improvement while using low-pass filtering and sparse-gray-level phase data pages for holographic storage, and demonstrate the trade-off between code rate, block length, and estimated capacity gain.

© 2009 Optical Society of America

OCIS Codes
(210.2860) Optical data storage : Holographic and volume memories
(210.4680) Optical data storage : Optical memories
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Optical Data Storage

History
Original Manuscript: April 17, 2009
Revised Manuscript: August 9, 2009
Manuscript Accepted: August 19, 2009
Published: September 21, 2009

Citation
Bhargab Das, Joby Joseph, and Kehar Singh, "Phase-image-based sparse-gray-level data pages for holographic data storage," Appl. Opt. 48, 5240-5250 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-28-5240


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage (Springer-Verlag, 2000).
  2. L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231-1280 (2004). [CrossRef]
  3. K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, “High speed holographic data storage at 500 Gbit/in.2,” www.inphase-technologies.com/downloads/pdf/technology/HighSpeedHDS500Gbin2.pdf
  4. S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43, 4902-4914 (2004). [CrossRef] [PubMed]
  5. R. John, J. Joseph, and K. Singh, “Holographic data storage using phase modulated pixels,” Opt. Lasers Eng. 43, 183-194(2005). [CrossRef]
  6. J. Joseph and D. Waldman, “Homogenized Fourier transform holographic data storage using phase spatial light modulators and methods for recovery of data from the phase image,” Appl. Opt. 45, 6374-6380 (2006). [CrossRef] [PubMed]
  7. M. Hara, K. Tanaka, K. Tokuyama, M. Toishi, K. Hirooka, A. Fukumoto, and K. Watanbe, “Linear reproduction of a holographic storage channel using coherent addition of optical DC components,” Jpn. J. Appl. Phys. 47, 5885-5890(2008). [CrossRef]
  8. B. Das, J. Joseph, and K. Singh, “Performance analysis of content-addressable search and bit-error-rate characteristics of a defocused volume holographic data storage system,” Appl. Opt. 46, 5461-5470 (2007). [CrossRef] [PubMed]
  9. J.-S. Jang and D.-H. Shin, “Optical representation of binary data based on both intensity and phase modulation with a twisted-nematic liquid-crystal display for holographic digital data storage,” Opt. Lett. 26, 1797-1799 (2001). [CrossRef]
  10. L. Domján, P. Koppa, G. Szarvas, and J. Reményi, “Ternary phase-amplitude modulation with twisted nematic liquid crystal displays for Fourier-plane light homogenization in holographic storage,” Optik (Jena) 113, 382-390 (2002). [CrossRef]
  11. B. M. King and M. A. Neifeld, “Sparse modulation coding for increased capacity in volume holographic storage,” Appl. Opt. 39, 6681-6688 (2000).` [CrossRef]
  12. B. M. King, G. W. Burr, and M. A. Neifeld, “Experimental demonstration of gray-scale sparse modulation codes in volume holographic storage,” Appl. Opt. 42, 2546-2559 (2003). [CrossRef] [PubMed]
  13. A. Sütő and E. Lőrincz, “Optimization of data density in Fourier holographic system using spatial filtering and sparse modulation coding,” Optik (Jena) 115, 541-546 (2004). [CrossRef]
  14. O. Malki, J. Knittel, F. Przygodda, H. Trautner, and H. Richter, “Two dimensional modulation for holographic data storage systems,” Jpn. J. Appl. Phys. 47, 5993-5996 (2008). [CrossRef]
  15. Z. Göröcs, G. Erdei, T. Sarkadi, F. Ujhelyi, J. Reményi, P. Koppa, and E. Lőrincz, “Hybrid multinary modulation using a phase modulating spatial light modulator and a low-pass spatial filter,” Opt. Lett. 32, 2336-2338 (2007). [CrossRef] [PubMed]
  16. G. W. Burr, G. Barking, H. Coufal, J. A. Hoffnagle, and C. M. Jefferson, “Gray scale data pages for digital holographic data storage,” Opt. Lett. 23, 1218-1220 (1998). [CrossRef]
  17. G. Berger, K. O. Müller, C. Denz, I. Földvári, and A. Péter, “Digital data storage in a phase-encoded holographic memory system: data quality and security,” Proc. SPIE 4988, 104-111(2003). [CrossRef]
  18. B. Das, J. Joseph, and K. Singh, “Phase modulated gray-scale data pages for digital holographic data storage,” Opt. Commun. 282, 2147-2154 (2009). [CrossRef]
  19. B. Das, S. Vyas, J. Joseph, P. Senthilkumaran, and K. Singh, “Transmission type twisted nematic liquid crystal display for three gray level phase modulated holographic data storage systems,” Opt. Lasers Eng. 47, 1150-1159 (2009).
  20. P. Koppa, “Phase-to-amplitude data page conversion for holographic storage and optical encryption,” Appl. Opt. 46, 3561-3571 (2007). [CrossRef] [PubMed]
  21. M. Takabayashi, A. Okamoto, and K. Sato, “Time-domain differential detection of phase-modulated signals for phase-only holographic data storage,” Jpn. J. Appl. Phys. 48, 03A032 (2009). [CrossRef]
  22. P. Várhegyi, Á. Kerekes, S. Sajti, F. Ujhelyi, P. Koppa, G. Szarvas, and E. Lőrincz, “Saturation effect in azobenzene polymers used for polarization holography,” Appl. Phys. B 76, 397-402 (2003). [CrossRef]
  23. L. D. Ramamoorthy and B. V. K. Vijaya Kumar, “Sparse modulation codes for channel with media saturation,” in Joint International Symposium on Optical Memory and Optical Data Storage 2008 (CD) (2008), paper ThC04 TD05-56 (1).
  24. G. Berger, M. Dietz, and C. Denz, “Hybrid multinary modulation codes for page-oriented holographic data storage,” J. Opt. A Pure Appl. Opt. 10, 115305 (2008). [CrossRef]
  25. M. Ayres, A. Hosinks, and K. Curtis, “Image oversampling for page-oriented optical data storage,” Appl. Opt. 45, 2459-2464(2006). [CrossRef] [PubMed]
  26. G. W. Burr and T. Weiss, “Compensation for pixel misregistration in volume holographic data storage,” Opt. Lett. 26, 542-544 (2001). [CrossRef]
  27. C.-Y. Chen, C.-C. Fu, and T.-D. Chiueh, “Low-complexity pixel detection for images with misalignment and interpixel interference in holographic data storage,” Appl. Opt. 47, 6784-6795(2008). [CrossRef] [PubMed]
  28. G. W. Burr and B. Marcus, “Coding tradeoffs for high-density holographic data storage,” Proc. SPIE 3802, 18-29(1999). [CrossRef]
  29. O. Malki, F. Przygodda, J. Knittel, H. Trautner, and H. Richter, “Optimal aperture size for maximizing the capacity of holographic data storage systems,” in Joint International Symposium on Optical Memory and Optical Data Storage 2008 (CD) (2008), paper TuP09 TD05-110 (1).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited