OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 28 — Oct. 1, 2009
  • pp: 5280–5286

Ink-jetting AJL8/APC for D-fiber electric field sensors

Joshua Kvavle, Stephen Schultz, and Richard Selfridge  »View Author Affiliations


Applied Optics, Vol. 48, Issue 28, pp. 5280-5286 (2009)
http://dx.doi.org/10.1364/AO.48.005280


View Full Text Article

Enhanced HTML    Acrobat PDF (726 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Spin casting electro-optic polymers for in-fiber device fabrication is problematic due to the flexibility and high-contrast topography of optical fibers. An ink-jetting method is developed for the deposition of AJL8/APC using a commercially available printer. The method results in more consistent control of film thickness and uses 1000 times less material than the spin-coating method. A D-fiber electric field sensor is fabricated using this deposition method and exhibits a sensitivity of 157 V / ( m Hz ) at a modulation frequency of 6 GHz .

© 2009 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(230.2090) Optical devices : Electro-optical devices
(310.3840) Thin films : Materials and process characterization

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 11, 2009
Revised Manuscript: August 27, 2009
Manuscript Accepted: September 3, 2009
Published: September 21, 2009

Citation
Joshua Kvavle, Stephen Schultz, and Richard Selfridge, "Ink-jetting AJL8/APC for D-fiber electric field sensors," Appl. Opt. 48, 5280-5286 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-28-5280


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. H. Kolner and D. M. Bloom, “Electrooptic sampling in GaAs integrated circuits,” IEEE J. Quantum Electron. 22, 79-93(1986). [CrossRef]
  2. M. Shinagawa, T. Nagatsuma, and S. Miyazawa, “Sensitivity improvement of an electro-optic high-impedance probe,” IEEE Trans. Instrum. Meas. 47, 235-239 (1998). [CrossRef]
  3. R. M. Reano, K. Yang, J. F. Whitaker, and L. P. B. Katehi, “Simultaneous measurements of electric and thermal fields utilizing an electrooptic semiconductor probe,” IEEE Trans. Microwave Theory Tech. 49, 2523-2531 (2001). [CrossRef]
  4. R. Forber, W. C. Wang, D.-Y. Zang, S. Schultz, and R. Selfridge, “Dielectric EM field probes for HPM test & evaluation,” presented at the 2006 Annual ITEA Technology Review, Cambridge, Massachusetts, 7-10 August 2006.
  5. H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K.-Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber, IEEE Sens. J. 7, 515-524 (2007). [CrossRef]
  6. E. K. Johnson, J. M. Kvavle, R. H. Selfridge, S. M. Schultz, R. Forber, W. Wang, and D. Y. Zang, “Electric field sensing with a hybrid polymer/glass fiber,” Appl. Opt. 46, 6953-6958(2007). [CrossRef] [PubMed]
  7. R. Gibson, R. Selfridge, S. Schultz, W. Wang, and R. Forber, “Electro-optic sensor from high Q resonance between optical D-fiber and slab waveguide,” Appl. Opt. 47, 2234-2240 (2008). [CrossRef] [PubMed]
  8. T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber bragg gratings,” IEEE Photon. Technol. Lett. 17, 1926-1928 (2005). [CrossRef]
  9. R. H. Selfridge, S. M. Schultz, T. L. Lowder, V. P. Wnuk, A. Mendez, S. Ferguson, and T. Graver, “Packaging of surface relief fiber Bragg gratings for use as strain sensors at high temperature,” Proc. SPIE 6167, 616702 (2006). [CrossRef]
  10. T. L. Lowder, J. D. Gordon, S. M. Schultz, and R. H. Selfridge, “Volatile organic compound sensing using a surface relief D-shaped fiber Bragg grating and a polydimethylsiloxane layer,” Opt. Lett. 32, 2523-2525 (2007). [CrossRef] [PubMed]
  11. R. J. Michalak, K. Ying-Hao, F. D. Nash, A. Szep, J. R. Caffey, P. M. Payson, F. Haas, B. F. McKeon, P. R. Cook, G. A. Brost, J. Luo, A. K.-Y. Jen, L. R. Dalton, and W. H. Steier, “High-speed AJL8/APC polymer modulator,” IEEE Photon. Technol. Lett. 18, 1207-1209 (2006). [CrossRef]
  12. N. P. Pham, J. N. Burghartz, and P. M. Sarro, “Spray coating of photoresist for pattern transfer on high topography surfaces,” J. Micromech. Microeng. 15, 691-697 (2005). [CrossRef]
  13. M. F. Mabrook, C. Pearson, and M. C. Petty, “An inkjet-printed chemical fuse,” Appl. Phys. Lett. 86, 013507 (2005). [CrossRef]
  14. Y. Xia and R. H. Friend, “Controlled phase separation of polyfluorene blends via inkjet printing,” Macromolecules 38, 6466-6471 (2005). [CrossRef]
  15. Y. Xia and R. H. Friend, “Polymer bilayer structure via inkjet printing,” Appl. Phys. Lett. 88, 163508 (2006). [CrossRef]
  16. Y. Liu, K. Varahramyan, and T. Cui, “Low-voltage all-polymer field-effect transistor fabricated using an inkjet printing technique,” Macromol. Rapid Commun. 26, 1955-1959 (2005). [CrossRef]
  17. M. F. Mabrook, C. Pearson, and M. C. Petty, “Inkjet-printed polypyrrole thin films for vapour sensing,” Sens. Actuators B 115, 547-551 (2006). [CrossRef]
  18. B.-J. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet printing of polymers: state of the art and future developments,” Adv. Mater. 16, 203-213 (2004). [CrossRef]
  19. P. Calvert, “Inkjet printing for materials and devices,” Chem. Mater. 13, 3299-3305 (2001). [CrossRef]
  20. Y. Yoshioka and G. E. Jabbour, “Desktop inkjet printer as a tool to print conducting polymers,” Synth. Met. 156, 779-783(2006). [CrossRef]
  21. G. H. Shim, M. G. Han, J. C. Sharp-Norton, S. E. Creager, and S. H. Foulger, “Inkjet-printed electrochromic devices utilizing polyaniline--silica and poly(3,4-ethylenedioxythiophene)--silica colloidal composite particles,” J. Mater. Chem. 18, 594-601 (2008). [CrossRef]
  22. E. Tekin, “Thin film libraries of functional polymers and materials prepared by inkjet printing,” Ph.D. dissertation (Eindhoven University, 2007).
  23. J. Luo, S. L, M. A. Haller, J.-W. Kang, T.-D. Kim, S.-H. Jang, B. Chen, N. Tucker, H. Li, H.-Z. Tang, L. R. Dalton, Y. Liao, B. H. Robinson, and A. K. Jen, “Recent progress in developing highly efficient and thermally stable nonlinear optical polymers for electro-optics,” Proc. SPIE 5351, 36-43 (2004). [CrossRef]
  24. “Jettable fluid formulation guidelines,” http://www.dimatix.com/files/Dimatix-Materials-Printer-Jettable-Fluid-Formulation-Guidelines.pdf
  25. D. J. Markos, B. L. Ipson, K. H. Smith, S. M. Schultz, R. H. Selfridge, T. D. Monte, R. B. Dyott, and G. Miller, “Controlled core removal from a D-shaped optical fiber,” Appl. Opt. 42, 7121-7125 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited