OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 28 — Oct. 1, 2009
  • pp: 5287–5294

Determination of smoke plume and layer heights using scanning lidar data

Vladimir A. Kovalev, Alexander Petkov, Cyle Wold, Shawn Urbanski, and Wei Min Hao  »View Author Affiliations


Applied Optics, Vol. 48, Issue 28, pp. 5287-5294 (2009)
http://dx.doi.org/10.1364/AO.48.005287


View Full Text Article

Enhanced HTML    Acrobat PDF (1022 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The methodology of using mobile scanning lidar data for investigation of smoke plume rise and high-resolution smoke dispersion is considered. The methodology is based on the lidar-signal transformation proposed recently [ Appl. Opt. 48, 2559 (2009)] . In this study, similar methodology is used to create the atmospheric heterogeneity height indicator (HHI), which shows all heights at which the smoke plume heterogeneity was detected by a scanning lidar. The methodology is simple and robust. Subtraction of the initial lidar signal offset from the measured lidar signal is not required. HHI examples derived from lidar scans obtained with the U.S. Forest Service, Fire Sciences Laboratory mobile lidar in areas polluted by wildfires are presented, and the basic details of the methodology are discussed.

OCIS Codes
(280.3640) Remote sensing and sensors : Lidar
(290.1350) Scattering : Backscattering
(290.2200) Scattering : Extinction

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: June 12, 2009
Revised Manuscript: August 12, 2009
Manuscript Accepted: August 20, 2009
Published: September 21, 2009

Citation
Vladimir A. Kovalev, Alexander Petkov, Cyle Wold, Shawn Urbanski, and Wei Min Hao, "Determination of smoke plume and layer heights using scanning lidar data," Appl. Opt. 48, 5287-5294 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-28-5287


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. F. Radke, J. H. Lyons, P. V. Hobbs, D. A. Hegg, D. V. Sandberg, and D. E. Ward, “Airborne monitoring and smoke characterization of prescribed fires on forest lands in Western Washington and Oregon,” Final General Technical Report PNW-GTR-251 (USDA Forest Service, 1990).
  2. P. V. Hobbs, J. S. Reid, J. A. Herring, J. D. Nance, R. E. Weiss, J. L. Ross, D. A. Hegg, R. D. Ottmar, and C. Liousse, “Particle and trace-gas measurements in the smoke from prescribed burns of forest products in the Pacific Northwest,” in Biomass Burning and Global Change (MIT Press, 1996), pp. 697-715.
  3. P. V. Hobbs, P. Sinha, R. J. Yokelson, T. J. Christian, D. R. Blake, S. Gao, T. W. Kirchstetter, T. Novakov, and P. Pilewskie, “Evolution of gases and particles from a savanna fire in South Africa,” J. Geophys. Res. 108, doi:10.1029/2002JD002352 8485 (2003). [CrossRef]
  4. Y. J. Kaufman, J. M. Haywood, P. V. Hobbs, W. Hart, R. Kleidman, and B. Schmid, “Remote sensing of vertical distributions of smoke aerosol off the coast of Africa,“ Geophys. Res. Lett. 30 No. (16), doi: 10.1029/2003GL017068 1831 (2003). [CrossRef]
  5. D. Müller, I. Mattis, U. Wandinger, A. Ansmann, D. Althausen, and A. Stohl, “Raman lidar observation of aged Siberian and Canadian forest fire smoke in the free troposphere over Germany in 2003: Microphysical particle characterization,” J. Geophys. Res. 110, doi: 10.1029/2004JD005756, D17201(2005). [CrossRef]
  6. G. R. McMeeking, S. M. Kreidenweis, C. M. Carrico, J. L. Colent, D. E. Day, and W. C. Malm, “Observations of smoke-influenced aerosol during the Yosemite Aerosol Characterization Study: 2. Aerosol scattering and absorption properties,” J. Geophys. Res. 110, doi: 10.1029/2004JD005624, D18209 (2005). [CrossRef]
  7. W. L. Eberhard, G. T. McNice, and S. W. Troxel, “Lidar sensing of plume dispersion: analysis methods and product quality for light-scattering tracer particles,” J. Atmos. Ocean. Technol. 4 No. (4), 674-689 (1987). [CrossRef]
  8. W. L. Eberhard and W. R. Moninger, “Plume dispersion in the convective boundary layer. Part 1: CONDORS field experiment and example measurements,” J. Appl. Meteorol. 27 No. (5), 599-616 (1988). [CrossRef]
  9. R. M. Banta, L. D. Oliver, E. T. Holloway, R. A. Kropfli, B. W. Bartram, R. E. Cupp, and M. J. Post, “Smoke-column observations from two forest fires using Doppler lidar and Doppler radar,” J. Appl. Meteorol. 31 No. (11), 1328-1349(1992). [CrossRef]
  10. A. Lavrov, A. B. Utkin, R. Vilar, and A. Fernandes, “Application of lidar in ultraviolet, visible, and infrared ranges for early forest fire detection,” Appl. Phys. B 76, doi:10.1007/s00340-002-1053-y, 87-95 (2003). [CrossRef]
  11. Yu. S. Balin, A. D. Ershov, P. A. Konyaev, and D. S. Lomakin, “Monitoring of the aerosol formations travel velocity in the atmosphere by use of video and lidar data,” J. Atmos. Ocean. Opt. 17 No. (12), 885-890 (2004).
  12. V. A. Kovalev, C. Wold, A. Petkov, and Wei Min Hao, “Alternative method for determining the constant offset in lidar signal,” Appl. Opt. 48, 2559-2584 (2009). [CrossRef] [PubMed]
  13. L. Menut, C. Flamant, J. Pelon, and P. H. Flamant, “Urban boundary-layer height determination from lidar measurements over the Paris area,” Appl. Opt. 38, 945-954(1999). [CrossRef]
  14. S. H. Melfi, J. D. Spinhire, S. H. Chou, and S. P. Palm, “Lidar observations of vertically organized convection in the planetary boundary layer over the ocean,” J. Clim. Appl. Meteorol. 24, 806-821 (1985). [CrossRef]
  15. R. Boers and S. H. Melfi, “Cold-air outbreak during MASEX: lidar observations and boundary layer model test,” Boundary-Layer Meteorol. 39, 41-51 (1987). [CrossRef]
  16. C. Flamant, J. Pelon, P. H. Flamant, and P. Durant, “Lidar determination of the entrainment zone thickness and the top of the unstable marine atmospheric boundary layer,” Boundary-Layer Meteorol. 83, 247-284 (1997). [CrossRef]
  17. W. P. Hooper and E. W. Eloranta, “Lidar measurements of wind in the planetary boundary layer: the method, accuracy, and results from joint measurements with radiosonde and kytoon,” J. Clim. Appl. Meteorol. 25, 990-1001(1986). [CrossRef]
  18. A. Piironen and E. W. Eloranta, “Convective boundary layer mean depths, cloud base altitudes, cloud top altitudes, cloud coverages, and cloud shadows obtained from volume imaging lidar data,” J. Geophys. Res. 100, 25569-25576(1995). [CrossRef]
  19. I. M. Brooks, “Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles,” J. Atmos. Ocean. Technol. 20, 1092-1105 (2003). [CrossRef]
  20. H. Baars, A. Ansmann, R. Engelmann, and D. Althausen, “Continuous monitoring of the boundary-layer top with lidar,” Atmos. Chem. Phys. 8, 7281-7296 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited