OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 28 — Oct. 1, 2009
  • pp: 5301–5306

Electrically tunable liquid-crystal wave plate using quadripolar electrode configuration and transparent conductive polymer layers

Nicolas Fraval, Pascal Joffre, Stéphane Formont, and Jean Chazelas  »View Author Affiliations

Applied Optics, Vol. 48, Issue 28, pp. 5301-5306 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (697 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the realization of an electrically tunable wave plate, which uses a nematic liquid-crystal (LC) phase retarder that allows fast and continuous control of the polarization state. This device is built using a quadripolar electrode design and transparent conductive polymer layers in order to obtain a uniform electric field distribution in the interelectrode area. With this realization, we obtain a high degree of control of the orientation of the electric field and, consequently, of the LC director. Indeed, this modulator outperforms classical bipolar LC cells in both optical path variation ( > 4 μm ) and LC rotation speed ( 0.4 ° / μs ).

© 2009 Optical Society of America

OCIS Codes
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: July 20, 2009
Manuscript Accepted: August 26, 2009
Published: September 21, 2009

Nicolas Fraval, Pascal Joffre, Stéphane Formont, and Jean Chazelas, "Electrically tunable liquid-crystal wave plate using quadripolar electrode configuration and transparent conductive polymer layers," Appl. Opt. 48, 5301-5306 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Freedericksz and V. Zolina, “Forces causing the orientation of an anisotropic liquid,” Trans. Faraday Soc. 29, 919-930(1933). [CrossRef]
  2. S. E. Gilman, T. G. Baur, D. J. Gallagher, and N. K. Shankar, “Properties of tunable nematic liquid-crystal retarders,” Proc. SPIE 1166, 461-471 (1990).
  3. U. Efron, S. T. Wu, and T. D. Bates, “Nematic liquid crystals for spatial light modulators: recent studies,” J. Opt. Soc. Am. B 3, 247-252 (1986). [CrossRef]
  4. K. Hirabayashi and C. Amano, “Liquid-crystal polarization controller arrays on planar waveguide circuits,” IEEE Photonics Technol. Lett. 14, 504-506 (2002). [CrossRef]
  5. M. Hareng, G. Assouline, and E. Leiba, “La birefringence electriquement controlee dans les cristaux liquides nematiques,” Appl. Opt. 11, 2920-2925 (1972). [CrossRef] [PubMed]
  6. G. D. Sharp and K. M. Johnson, “High-speed analog complex-amplitude liquid-crystal light modulator,” Opt. Lett. 19, 1228-1230 (1994). [CrossRef] [PubMed]
  7. K. Hirabayashi, “Electrically controllable liquid-crystal rotatable wave plate with variable phase retardation,” Appl. Opt. 44, 3552-3559 (2005). [CrossRef] [PubMed]
  8. Y. Ohtera, T. Chiba, and S. Kawakami, “Liquid crystal rotatable waveplates,” IEEE Photonics Technol. Lett. 8, 390-392 (1996). [CrossRef]
  9. L. Dupont, J. L. de Bougrenet de la Tocnaye , M. L. Gall, and D. Penninckx, “Principle of a compact polarisation mode dispersion controller using homeotropic electroclinic liquid crystal confined single mode fibre devices,” Opt. Commun. 176, 113-119 (2000). [CrossRef]
  10. Y. Defosse, P. Gautier, J. de Bougrenet de la Tocnaye, F. Colliou, A. Guenot, G. Mouzer, C. Kaczmarek, and D. Labat, “Stabilized liquid crystal rotatable fractional wave-plates stack for fast polarisation analysis and control,” in “Optical Fiber Communication Conference, 2004 (OFC 2004) (IEEE, 2004), Vol. 2, paper ThF 1-3..
  11. P. Joffre, G. Illiaquer, and J. P. Huignard, “Electro-optic properties of nematic liquid crystals for phase modulation in the infrared 10.6 um,” Proc. SPIE 1126, 12-20 (1989).
  12. D. Dolfi, M. Labeyrie, P. Joffre, and J. Huignard, “Liquid crystal microwave phase shifter,” Electron. Lett. 29, 926-928(1993). [CrossRef]
  13. S. Kirchmeyer and K. Reuter, “Scientific importance, properties and growing applications of poly (3,4-ethylenedioxythiophene),” J. Mater. Chem. 15, 2077-2088(2005). [CrossRef]
  14. C. Geuzaine, P. Dular, and W. Legros, “A general environment for the treatment of discrete problems and its application to coupled finite element and boundary integral methods,” in Proceedings of the 8th International Institute for Fundamentals and Theory in Electrical Engineering (IGTE) Symposium on Numerical Field Calculation in Electrical Engineering (IGTE, 1998).
  15. B. R. Acharya, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, C. C. Huang, and R. Pindak, “In-fiber nematic liquid crystal optical modulator based on in-plane switching with microsecond response time,” Appl. Phys. Lett. 81, 5243-5245(2002). [CrossRef]
  16. J. Ouyang, C. Chu, F. Chen, Q. Xu, and Y. Yang, “High-conductivity poly (3,4-thylenedioxythiophene):poly (styrene sulfonate) film and its application in polymer optoelectronic devices,” Adv. Funct. Mater. 15, 203-208 (2005). [CrossRef]
  17. S. Wu, U. Efron, and L. D. Hess, “Birefringence measurements of liquid crystals,” Appl. Opt. 23, 3911-3915 (1984). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited