OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 28 — Oct. 1, 2009
  • pp: 5307–5317

Determination of the components of the gyration tensor of quartz by oblique incidence transmission two-modulator generalized ellipsometry

Oriol Arteaga, Adolf Canillas, and Gerald E. Jellison, Jr.  »View Author Affiliations


Applied Optics, Vol. 48, Issue 28, pp. 5307-5317 (2009)
http://dx.doi.org/10.1364/AO.48.005307


View Full Text Article

Enhanced HTML    Acrobat PDF (1355 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The two independent components of the gyration tensor of quartz, g 11 and g 33 , have been spectroscopically measured using a transmission two-modulator generalized ellipsometer. The method is used to determine the optical activity in crystals in directions other than the optic axis, where the linear birefringence is much larger than the optical activity.

© 2009 Optical Society of America

OCIS Codes
(260.1180) Physical optics : Crystal optics
(260.1440) Physical optics : Birefringence
(160.1585) Materials : Chiral media
(240.2130) Optics at surfaces : Ellipsometry and polarimetry

ToC Category:
Physical Optics

History
Original Manuscript: July 31, 2009
Manuscript Accepted: August 14, 2009
Published: September 21, 2009

Citation
Oriol Arteaga, Adolf Canillas, and Gerald E. Jellison, Jr., "Determination of the components of the gyration tensor of quartz by oblique incidence transmission two-modulator generalized ellipsometry," Appl. Opt. 48, 5307-5317 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-28-5307


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. F. Arago, “Sur une modification remarquable qu' éprouvent les rayons lumineux dans leur passage à travers certains corps diaphanes, et sur quelques autres nouveaux phénomènes d'optique,” Mem. Inst. 1, 93-134 (1811).
  2. J. B. Biot, “Mémoire sur un nouveau genre d'oscillations que les molécules de la lumière éprouvent, en traversant certains cristaux,” Mem. Inst. 1, 1-372 (1812).
  3. T. M. Lowry, “Optical rotatory dispersion. Part I: The natural and magnetic rotatory dispersion in quartz of light in the visible region of the spectrum,” R. Soc. London Philos. Trans. A 212, 261-297 (1913). [CrossRef]
  4. C. Chou, Y.-C. Huang, and M. Chang, “Precise optical activity measurement of quartz plate by using a true phase-sensitive technique,” Appl. Opt. 36, 3604-3609 (1997). [CrossRef] [PubMed]
  5. D. Yogev-Einot and D. Avnir, “The temperature-dependent optical activity of quartz: from le châtelier to chirality measures,” Tetrahedron: Asymmetry 17, 2723-2725 (2006). [CrossRef]
  6. M. B. Myers and K. Vedam, “Effect of pressure on the optical rotatory power and dispersion of crystalline sodium chlorate,” J. Opt. Soc. Am. 57, 1146-1148 (1967). [CrossRef]
  7. J. Kobayashi and Y. Uesu, “A new optical method and apparatus 'HAUP' for measuring simultaneously optical activity and birefringence of crystals. I. Principles and construction,” J. Appl. Crystallogr. 16, 204-211 (1983). [CrossRef]
  8. J. R. L. Moxon, A. R. Renshaw, and I. J. Tebbutt, “The simultaneous measurement of optical activity and circular dichroism in birefringent linearly dichroic crystal sections. II. Description of apparatus and results for quartz, nickel sulphate hexahydrate and benzil,” J. Phys. D 24, 1187-1192 (1991). [CrossRef]
  9. J. R. L. Moxon and A. R. Renshaw, “The simultaneous measurement of optical activity and circular dichroism in birefringent linearly dichroic crystal sections. I. Introduction and description of the method,” J. Phys. Condens. Matter 2, 6807-6836 (1990). [CrossRef]
  10. C. Hernandez-Rodriguez and P. Gomez-Garrido, “Optical anisotropy of quartz in the presence of temperature-dependent multiple reflections using a high-accuracy universal polarimeter,” J. Phys. D 33, 2985-2994 (2000). [CrossRef]
  11. P. Gomez and C. Hernandez, “High-accuracy universal polarimeter measurement of optical activity and birefringence of α-quartz in the presence of multiple reflections,” J. Opt. Soc. Am. B 15, 1147-1154 (1998). [CrossRef]
  12. B. Wang and T. C. Oakberg, “A new instrument for measuring both the magnitude and angle of low level linear birefringence,” Rev. Sci. Instrum. 70, 3847-3854 (1999). [CrossRef]
  13. G. E. Jellison, Jr., and C. M. Rouleau, “Determination of optical birefringence by using off-axis transmission ellipsometry,” Appl. Opt. 44, 3153-3159 (2005). [CrossRef] [PubMed]
  14. A. F. Drake, “Polarisation modulation-the measurement of linear and circular dichroism,” J. Phys. E 19, 170-181 (1986). [CrossRef]
  15. L. A. Nafie, “Dual polarization modulation: a real-time, spectral-multiplex separation of circular dichroism from linear birefringence spectral intensities,” Appl. Spectrosc. 54, 1634-1645 (2000). [CrossRef]
  16. G. E. Jellison, Jr., and F. A. Modine, “Two-modulator generalized ellipsometry: theory,” Appl. Opt. 36, 8190-8198 (1997). [CrossRef]
  17. G. E. Jellison, Jr., and F. A. Modine, “Two-modulator generalized ellipsometry: experiment and calibration,” Appl. Opt. 36, 8184-8189 (1997). [CrossRef]
  18. O. Arteaga, A. Canillas, R. Purrello, and J. Ribó, “Evidence of induced chirality in stirred solutions of supramolecular nanofibers,” Opt. Lett. 34, 2177-2179 (2009). [CrossRef] [PubMed]
  19. G. E. Jellison, Jr., C. O. Griffiths, D. E. Holcomb, and C. M. Rouleau, “Transmission two-modulator generalized ellipsometry measurements,” Appl. Opt. 41, 6555-6566(2002). [CrossRef] [PubMed]
  20. G. E. Jellison, Jr., J. D. Hunn, and C. M. Rouleau, “Normal-incidence generalized ellipsometry using the two-modulator generalized ellipsometry microscope,” Appl. Opt. 45, 5479-5488 (2006). [CrossRef] [PubMed]
  21. S. Chandrasekhar, “Optical rotatory dispersion of crystals,” Proc. R. Soc. A 259, 531-553 (1961). [CrossRef]
  22. G. L. Tan, M. F. Lemon, D. J. Jones, and R. H. French, “Optical properties and London dispersion interaction of amorphous and crystalline SiO2 determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry,” Phys. Rev. B 72, 205117 (2005). [CrossRef]
  23. A. Konstantinova, B. Nabatov, E. Evdishchenko, and K. Konstantinov, “Modern application packages for rigorous solution of problems of light propagation in anisotropic layered media. II. Optically active crystals,” Crystallogr. Rep. (Transl. Kristallografiya) 47, 815-823 (2002). [CrossRef]
  24. G. Szivessy and C. Münster, “Über die prüfung der gitteroptik bei aktiven kristallen,” Ann. Phys. 412, 703-736 (1934). [CrossRef]
  25. M. Born, Optik: Ein Lehrbuch der Elektromagnetische Lichttheorie (Springer, 1933).
  26. W. Kaminsky, “Experimental and phenomenological aspects of circular birefringence and related properties in transparent crystals,” Rep. Prog. Phys. 63, 1575-1640 (2000). [CrossRef]
  27. J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford U. Press, 1985).
  28. A. Konstantinova, E. Evdishchenko, and K. Imangazieva, “Manifestation of optical activity in crystals of different symmetry classes,” Crystallogr. Rep. (Transl. Kristallografiya) 51, 998-1008 (2006). [CrossRef]
  29. D. Eimerl, “Quantum electrodynamics of optical activity in birefringent crystals,” J. Opt. Soc. Am. B 5, 1453-1461(1988). [CrossRef]
  30. G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95-102 (1999). [CrossRef]
  31. T. Bradshaw and G. H. Livens, “The formula for the optical rotatory dispersion of quartz,” Proc. R. Soc. A 122, 245-250(1929). [CrossRef]
  32. S. Chandrasekhar, “Simple model for optical activity,” Am. J. Phys. 24, 503-506 (1956). [CrossRef]
  33. O. Arteaga and A. Canillas, “Pseudopolar decomposition of the Jones and Mueller-Jones exponential polarization matrices,” J. Opt. Soc. Am. A 26, 783-793 (2009). [CrossRef]
  34. S.-L. Lu and A. P. Loeber, “Depolarization of white light by a birefringent crystal,” J. Opt. Soc. Am. 65, 248-251 (1975). [CrossRef]
  35. R. A. Chipman, Handbook of Optics, Vol. 2: Devices, Measurements, and Properties, 2nd ed. (McGraw-Hill, 1994), Chap. 22, p. 22.31.
  36. S.-Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106-1113 (1996). [CrossRef]
  37. J. Kobayashi, T. Asahi, S. Takahashi, and A. M. Glazer, “Evaluation of the systematic errors of polarimetric measurements: application to measurements of the gyration tensors of α-quartz by the HAUP,” J. Appl. Crystallogr. 21, 479-484(1988). [CrossRef]
  38. J. Jerphagnon and D. S. Chemla, “Optical activity of crystals,” J. Chem. Phys. 65, 1522-1529 (1976). [CrossRef]
  39. A. Konstantinova, K. Rudoy, B. Nabatov, E. Evdishchenko, V. Stroganov, and O. Pikul', “The influence of optical activity on the intensity and polarization parameters of transmitted light in crystals,” Crystallogr. Rep. (Transl. Kristallografiya) 48, 823-831 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited