OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 28 — Oct. 1, 2009
  • pp: 5324–5336

Analysis and demonstration of coupling control in polymer microring resonators using photobleaching

Greeshma Gupta, Ying-Hao Kuo, Hidehisa Tazawa, William H. Steier, Andrew Stapleton, and John D. O’Brien  »View Author Affiliations


Applied Optics, Vol. 48, Issue 28, pp. 5324-5336 (2009)
http://dx.doi.org/10.1364/AO.48.005324


View Full Text Article

Enhanced HTML    Acrobat PDF (1718 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe postfabrication trimming of coupling in both laterally and vertically coupled polymer microring resonators (MRRs), using photobleaching. For both cases, a tapered directional-coupler-based simple analytical model is developed to simulate the change in coupling due to a bleaching-induced decrease in refractive index. A tightly focused laser beam spot (a few kilowatts per square centimeter) is used to precisely bleach the coupling region alone. Coupling control is achieved for (1) high-Q passive rings by bleaching the vertically coupled chromophore-doped bus waveguide, and for (2) laterally coupled electro-optic ring modulators, by bleaching both the ring and the waveguide in the coupling region. The power coupling ratio (PCR) of an undercoupled high-Q MRR filter is reduced by 0.54 percentage points for the TE mode, causing the MRR finesse to increase from a value of 72 to 108. For a ring modulator, the PCR was increased by 3.5 percentage points for the TM mode, causing a 6 dB increase in extinction ratio, to achieve a final value of nearly 25 dB . Phase/group-delay characterization confirmed that the ring was trimmed toward critical coupling.

© 2009 Optical Society of America

OCIS Codes
(230.4555) Optical devices : Coupled resonators
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: July 10, 2009
Manuscript Accepted: August 13, 2009
Published: September 21, 2009

Citation
Greeshma Gupta, Ying-Hao Kuo, Hidehisa Tazawa, William H. Steier, Andrew Stapleton, and John D. O'Brien, "Analysis and demonstration of coupling control in polymer microring resonators using photobleaching," Appl. Opt. 48, 5324-5336 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-28-5324


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997). [CrossRef]
  2. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20, 1968-1975 (2002). [CrossRef]
  3. H. Tazawa, Y. H. Kuo, I. Dunayevskiy, J. Luo, A. K. Y. Jen, H. R. Fetterman, and W. H. Steier, “Ring resonator-based electrooptic polymer traveling wave modulator,” J. Lightwave Technol. 24, 3514-3519 (2006). [CrossRef]
  4. B. Liu, A. Shakouri, and J. E. Bowers, “Wide tunable double ring resonator coupled lasers,” IEEE Photon. Technol. Lett. 14, 600-602 (2002). [CrossRef]
  5. C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Capuzzo, L. T. Gomez, T. N. Nielsen, and I. Brener, “Multistage dispersion compensator using ring resonators,” Opt. Lett. 24, 1555-1557 (1999). [CrossRef]
  6. C. G. H. Roeloffzen, L. Zhuang, R. G. Heideman, A. Borreman, and W. van Etten, “Ring resonator-based tunable optical delay line in LPCVD waveguide technology,” in 2005 IEEE/LEOS Symposium Benelux Chapter Proceedings (IEEE, 2005), pp. 79-82.
  7. B. Bhola, H.-C. Song, H. Tazawa, and W. H. Steier, “Polymer microresonator strain sensors,” IEEE Photon. Technol. Lett. 17, 867-869 (2005). [CrossRef]
  8. C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” J. Sel. Top. Quantum Electron. 12, 134-142 (2006). [CrossRef]
  9. J. K. S. Poon, J. Scheuer, Y. Xu, and A. Yariv, “Designing coupled-resonator optical waveguide delay lines,” J. Opt. Soc. Am. B 21, 1665-1673 (2004). [CrossRef]
  10. O. Schwelb, “Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters--a tutorial overview,” J. Lightwave Technol. 22, 1380-1394(2004). [CrossRef]
  11. M. C. M. Lee and M. C. Wu, “MEMS-actuated microdisk resonators with variable power coupling ratios,” IEEE Photon. Technol. Lett. 17, 1034-1036 (2005). [CrossRef]
  12. U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett. 88, 111107 (2006). [CrossRef]
  13. W. M. J. Green, R. K. Lee, G. A. DeRose, A. Scherer, and A. Yariv, “Hybrid InGaSP-InP Mach-Zehnder racetrack resonator for thermooptic switching and coupling control,” Opt. Express 13, 1651-1659 (2005). [CrossRef] [PubMed]
  14. Y. H. Kuo, W. H. Steier, S. Dubovitsky, and B. Jalali, “Demonstration of wavelength-insensitive biasing using an electrooptic polymer modulator,” IEEE Photon. Technol. Lett. 15, 813-815 (2003). [CrossRef]
  15. J. K. S. Poon, Y. Huang, G. T. Paloczi, A. Yariv, C. Zhang, and L. R. Dalton, “Wide-range tuning of polymer microring resonators by the photobleaching of CLD-1 chromophores,” Opt. Lett. 29, 2584-2586 (2004). [CrossRef] [PubMed]
  16. G. Gupta, W. H. Steier, Y. Liao, L. R. Dalton, J. D. Luo, and A. K.-Y. Jen, “Modeling photobleaching of optical chromophores: light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112, 8051-8060 (2008). [CrossRef]
  17. G. Gupta, “Microring resonator based filters and modulators: optical coupling control and applications to digital communications,” Ph.D. dissertation (University of Southern California, 2008).
  18. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321-322 (2000). [CrossRef]
  19. J. E. Heebner and R. W. Boyd, “Enhanced all-optical switching by use of a nonlinear fiber ring resonator,” Opt. Lett. 24, 847-849 (1999). [CrossRef]
  20. J. M. Choi, R. K. Lee, and A. Yariv, “Control of critical coupling in a ring resonator-fiber configuration: application to wavelength-selective switching, modulation, amplification, and oscillation,” Opt. Lett. 26, 1236-1238 (2001). [CrossRef]
  21. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14, 483-485 (2002). [CrossRef]
  22. V. M. Menon, W. Tong, and S. R. Forest, “Control of quality factor and critical coupling in microring resonators through integration of a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 16, 1343-1345 (2004). [CrossRef]
  23. A. Stapleton, S. Farell, H. Akhavan, R. Shafiiha, Z. Peng, S. J. Choi, J. O'Brien, P. D. Dapkus, and W. Marshall, “Optical phase characterization of active semiconductor microdisk resonators in transmission,” Appl. Phys. Lett. 88, 031106(2006). [CrossRef]
  24. Z. V. Vardeny, “A boost for fibre optics,” Nature 416, 489(2002). [CrossRef] [PubMed]
  25. P. Rabiei, “Calculation of losses in micro-ring resonators with arbitrary refractive index or shape profile and its applications,” J. Lightwave Technol. 23, 1295-1301 (2005). [CrossRef]
  26. R. Marz, Integrated Optics: Design and Modeling (Artech House, 1995).
  27. D. Marcuse, “Directional couplers made of nonidentical asymmetric slabs. Part I: synchronous couplers,” J. Lightwave Technol. 5, 113-118 (1987). [CrossRef]
  28. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley-Interscience, 1999). [CrossRef]
  29. A. Yariv, Optical Electronics in Modern Communications (Oxford, 1996).
  30. Y.-C. Hung and H. R. Fetterman, “Polymer-based directional coupler modulator with high linearity,” IEEE Photon. Technol. Lett. 17, 2565-2567 (2005). [CrossRef]
  31. Y.-C. Hung, University of California, Los Angeles, Calif. (personal communication, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited