OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 28 — Oct. 1, 2009
  • pp: 5348–5353

Spectral resolution of molecular ensembles under ambient conditions using surface plasmon coupled fluorescence emission

Ramamurthy Sai Sathish, Yordan Kostov, and Govind Rao  »View Author Affiliations


Applied Optics, Vol. 48, Issue 28, pp. 5348-5353 (2009)
http://dx.doi.org/10.1364/AO.48.005348


View Full Text Article

Enhanced HTML    Acrobat PDF (535 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the ability to spectrally resolve excited-state ensembles of pyranine (Py) utilizing nanometer-thick metal films as a low-cost analytical tool. Surface plasmon coupling allows to mitigate the effect of spectral broadening that is responsible for blurring the emission spectrum at room temperature, a situation common in conventional fluorescence spectroscopy. The approach is especially useful in the case when several excited-state species are present. Fluorescence emission from closely located protonated, deprotonated, and excimer species of Py couple into surface plasmons and are easily separated and observed with 11–14 fold intensity enhancements. Furthermore, the ultranarrowband photon-sorting of emission from microenvironments in a multispecies system is performed in this study using instruments that are readily available in most laboratories without employing any deconvolution procedure and/or additional dispersive optics.

© 2009 Optical Society of America

OCIS Codes
(240.0310) Optics at surfaces : Thin films
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(310.6188) Thin films : Spectral properties

ToC Category:
Spectroscopy

History
Original Manuscript: June 9, 2009
Revised Manuscript: September 3, 2009
Manuscript Accepted: September 4, 2009
Published: September 22, 2009

Citation
Ramamurthy Sai Sathish, Yordan Kostov, and Govind Rao, "Spectral resolution of molecular ensembles under ambient conditions using surface plasmon coupled fluorescence emission," Appl. Opt. 48, 5348-5353 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-28-5348


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Mayer and S. Neuenhofer, “Luminescent labels--more than just an alternative to radioisotopes?,” Angew. Chem., Int. Ed. 33, 1044-1072 (1994). [CrossRef]
  2. A. Thomas, S. Polarz, and M. Antonietti, “Influence of spatial restrictions on equilibrium reactions: a case study about the excimer formation of pyrene,” J. Phys. Chem. B 107, 5081-5087 (2003). [CrossRef]
  3. I. Capek, “Fate of excited probes in micellar systems,” Adv. Colloid Interface Sci. 97, 89-147 (2002). [CrossRef]
  4. H. Morawetz, “On the versatility of fluorescence techniques in polymer research,” J. Polym. Sci., Part A 37, 1725-1735(1999). [CrossRef]
  5. D. Kaya, Ö. Pekcan, and Y. Yilmaz, “Direct test of the critical exponents at the sol-gel transition,” Phys. Rev. E 69, 016117 (2004). [CrossRef]
  6. J. I. Zink and B. S. Dunn, “Photonics materials by the sol-gel process: optical materials,” J. Ceram. Soc. Jpn. 99, 878-893(1991).
  7. H. R. Kermis, Y. Kostov, and G. Rao, “Rapid method for the preparation of a robust optical pH sensor,” Analyst 128, 1181-1186 (2003).
  8. O. S. Wolfbeis, E. Fuerlinger, H. Kroneis, and H. Marsoner, “Fluorimetric analysis. 1. A study on fluorescent indicators for measuring near neutral (“physiological”) pH values,” Fresenius' J. Anal. Chem. 314, 119-124 (1983). [CrossRef]
  9. Z. Zhujun and W. R. Seitz, “A fluorescence sensor for quantifying pH in the range from 6.5 to 8.5,” Anal. Chim. Acta 160, 47-55 (1984). [CrossRef]
  10. J. L. Gehrich, D. W. Lubbers, N. Opitz, D. R. Hansmann, W. W. Miller, J. K. Tusa, and M. Yafuso, “Optical fluorescence and its application to an intravascular blood gas monitoring system,” IEEE Trans. Bio-med. Eng. BME-33, 117-132(1986). [CrossRef]
  11. S. Zhang, S. Tanaka, Y. A. B. D. Wickramasinghe, and P. Rolfe, “Fibre-optical sensor based on fluorescent indicator for monitoring physiological pH values,” Med. Bio. Eng. Comput. 33, 152-156 (1995). [CrossRef]
  12. X. Ge, Y. Kostov, and G. Rao, “High-stability non-invasive autoclavable naked optical CO2 sensor,” Biosens. Bioelectron. 18, 857-865 (2003). [CrossRef]
  13. X. Ge, Y. Kostov, and G. Rao, “Low-cost noninvasive optical CO2 sensing system for fermentation and cell culture,” Biotechnol. Bioeng. 89, 329-334 (2005). [CrossRef]
  14. A. Mills and Q. Chang, “Fluorescence plastic thin-film sensor for carbon dioxide,” Analyst 118, 839-843(1993).
  15. M. Uttamlal and D. R. Walt, “A fiberoptic carbon-dioxide sensor for fermentation monitoring,” Bio/Technology 13, 597-601 (1995). [CrossRef]
  16. R. N. Pattison, J. Swamy, B. Mendenhall, C. Hwang, and B. Frohlich, “Measurement and control of dissolved carbon dioxide in mammalian cell culture processes using an in situ fiber optic chemical sensor,” Biotechnol. Prog. 16, 769-774(2000). [CrossRef]
  17. M. Rini, B. Z. Magnes, E. Pines, and E. T. J. Nibbering, “Real-time observation of bimodal proton transfer in acid-base pairs in water,” Science 301, 349-352 (2003). [CrossRef]
  18. R. P. Haugland, The Handbook: A Guide to Fluorescent Probes and Labeling Technologies (Invitrogen Corporation, 2005).
  19. Y. Yilmaz, N. Uysal, A. Gelir, O. Guney, D. K. Aktas, S. Gogebakan, and A. Oner, “Elucidation of multiple-point interactions of pyranine fluoroprobe during the gelation,” Spectrochim. Acta. A 72, 332-338 (2009). [CrossRef]
  20. S. Ghosh, S. Dey, U. Mandal, A. Adhikari, S. K. Mondal, and K. Bhattacharyya, “Ultrafast proton transfer of pyranine in a supramolecular assembly: PEO−PPO−PEO triblock copolymer and CTAC,” J. Phys. Chem. B 111, 13504-13510 (2007). [CrossRef]
  21. R. Barnabas-Rodriguez and J. Estelrich, “Photophysical changes of pyranine induced by surfactants: evidence of premicellar aggregates,” J. Phys. Chem. B 113, 1972-1982 (2009). [CrossRef]
  22. S. K. Mondal, K. Sahu, S. Ghosh, P. Sen, and K. Bhattacharyya, “Excited-state proton transfer from pyranine to acetate in γ-cyclodextrin and hydroxypropyl γ-cyclodextrin,” J. Phys. Chem. A 110, 13646-13652 (2006). [CrossRef]
  23. R. Gupta and N. K. Chaudhury, “Probing internal environment of sol-gel bulk and thin films using multiple fluorescent probes,” J. Sol-Gel Sci. Technol. 49, 78-87 (2009). [CrossRef]
  24. A. Hakonen and S. Hulth, “A high-precision ratiometric fluorosensor for pH: Implementing time-dependent non-linear calibration protocols for drift compensation,” Anal. Chim. Acta 606, 63-71 (2008). [CrossRef]
  25. O. Tsukamoto, M. Villeneuve, A. Sakamoto, and H. Nakahara, “Change in the orientation and packing upon adsorption of pyranine molecules onto cationic langmuir monolayers and Langmuir-Blodgett films,” Bull. Chem. Soc. Jpn. 80, 1723-1730 (2007). [CrossRef]
  26. R. M. Wightman, P. Runnels, and Kevin Troyer, “Analysis of chemical dynamics in microenvironments,” Anal. Chim. Acta 400, 5-12 (1999). [CrossRef]
  27. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  28. J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Anal. Biochem. 324, 153-169 (2004). [CrossRef]
  29. H. M. Hiep, M. Fujii, and S. Hayashi, “Effects of molecular orientation on surface-plasmon-coupled emission patterns,” Appl. Phys. Lett. 91, 183110 (2007). [CrossRef]
  30. D. S. Smith, Y. Kostov, and G. Rao, “Signal enhancement of surface plasmon-coupled directional emission by a conical mirror,” Appl. Opt. 47, 5229-5234 (2008). [CrossRef]
  31. W. H. Weber and C. F. Eagen, “Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal,” Opt. Lett. 4, 236-238 (1979). [CrossRef]
  32. R. E. Benner, R. Dornhaus, and R. K. Chang, “Angular emission profiles of dye molecules excited by surface plasmon waves at a metal surface,” Opt. Commun. 30, 145-149(1979). [CrossRef]
  33. I. Pockrand and A. Brillante, “Nonradiative decay of excited molecules near a metal surface,” Chem. Phys. Lett. 69, 499-504 (1980). [CrossRef]
  34. M. Trnavsky, J. Enderlein, T. Ruckstuhl, C. McDonagh, and B. D. Maccraith, “Experimental and theoretical evaluation of surface plasmon-coupled emission for sensitive fluorescence detection,” J. Biomed. Opt. 13, 054021 (2008). [CrossRef]
  35. T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115-130(2000). [CrossRef]
  36. E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M. P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92, 2150-2161 (2007). [CrossRef]
  37. E. G. Matveeva, I. Gryczynski, J. Malicka, Z. Gryczynski, E. Goldys, J. Howe, K. W. Berndt, and J. R. Lakowicz, “Plastic versus glass support for an immunoassay on metal coated surfaces in optically dense samples utilizing directional surface plasmon coupled emission,” J. Fluoresc. 15, 865-871 (2005). [CrossRef]
  38. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission,” Anal. Biochem. 324, 170-182 (2004). [CrossRef]
  39. F. Kaneko, T. Nakano, M. Terakado, K. Shinbo, K. Kato, T. Kawakami, and T. Wakamatsu, “Emission light from prism/silver/ rhodamine-B LB film and multiple surface plasmon excitations in the ATR Kretschmann configuration,” Mater. Sci. Eng. C 22, 409-412 (2002). [CrossRef]
  40. T. Nakano, H. Kobayashi, K. Shinbo, K. Kato, F. Kaneko, T. Kawakami, and T. Wakamatsu, “Emission light properties from Ag/rhodamine-B LB films due to surface plasmon excitations in the Kretschmann and reverse configurations,” Mater. Res. Soc. Symp. Proc. 660, JJ8.35.1-JJ8.35.6 (2001).
  41. Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3nm green fluorescent protein monolayer,” Biotechnol. Prog. 21, 1731-1735(2005). [CrossRef]
  42. D. S. Smith, Y. Kostov, and G. Rao, “SPCE-based sensors: ultrafast oxygen sensing using surface-plasmon coupled emission from ruthenium probes,” Sens. Actuator B 127, 432-440(2007). [CrossRef]
  43. K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Observation of surface plasmon-coupled emission using thin platinum films,” Chem. Phys. Lett. 465, 92-95 (2008). [CrossRef]
  44. K. Aslan, K. McDonald, M. J. R. Previte, Y. Zhang, and C. D. Geddes, “Angular dependent metal-enhanced fluorescence from silver island films,” Chem. Phys. Lett. 464, 216-219 (2008). [CrossRef]
  45. K. Ray, H. Szmacinski, J. Enderlein, and J. R. Lakowicz, “Distance dependence of surface plasmon-coupled emission observed using Langmuir-Blodgett films,” Appl. Phys. Lett. 90, 251116 (2007). [CrossRef]
  46. E. G. Matveeva, Z. Gryczynski, J. Malicka, J. Lukomska, S. Makowiec, K. W. Berndt, J. R. Lakowicz, and I. Gryczynski, “Directional surface plasmon-coupled emission: Application for an immunoassay in whole blood,” Anal. Biochem. 344, 161-167 (2005).
  47. K. Aslan, Y. Zhang, and C. D. Geddes, “Surface plasmon coupled fluorescence in the visible to near-infrared spectral regions using thin nickel films: Application to whole blood assays,” Anal. Chem. 81, 3801-3808 (2009). [CrossRef]
  48. J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys J. 91, 2626-2635 (2006). [CrossRef]
  49. F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94, 023005 (2005). [CrossRef]
  50. Z. Gryczynski, I. Gryczynski, E. G. Matveeva, N. Calander, R. Grygorczyk, I. Akopova, S. Bharill, P. Muthu, S. Klidgar, and J. Borejdo, “New surface plasmons approach to single molecule detection (SMD) and fluorescence correlation spectroscopy (FCS),” Proc. SPIE 8, 64440G.1-64440G.11(2007).
  51. A. D. Wellman and M. J. Sepaniak, “Magnetically-assisted transport evanescent field fluoroimmunoassay,” Anal. Chem. 78, 4450-4456 (2006). [CrossRef]
  52. T. Bryk and M. Holovko, “Hydration structure of a poly(vinyl alcohol) chain fragment: Ab initio molecular dynamics study,” J. Mol. Liq. 147, 13-16 (2009). [CrossRef]
  53. R. Sai Sathish, Y. Kostov, D. S. Smith, and G. Rao, “Solution-deposited thin silver films on plastic surfaces for low-cost applications in plasmon-coupled emission sensors,” Plasmonics 4, 127-133 (2009). [CrossRef]
  54. E. Kreschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135-2136 (1968).
  55. D. S. Smith, Y. Kostov, G. Rao, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “First observation of surface plasmon-coupled emission due to LED excitation,” J. Fluoresc. 15, 895-900 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited