OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 28 — Oct. 1, 2009
  • pp: 5354–5362

Noise robustness of a colorimetric evaluation model for image acquisition devices with different characterization models

Mikiya Hironaga and Noriyuki Shimano  »View Author Affiliations

Applied Optics, Vol. 48, Issue 28, pp. 5354-5362 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (981 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Colorimetric evaluation of an image acquisition device is important for evaluating and optimizing a set of sensors. We have already proposed a colorimetric evaluation model [ J. Imaging Sci. Technol. 49, 588–593 (2005)JIMTE61062-3701] based on the Wiener estimation. The mean square errors (MSE) between the estimated and the actual fundamental vectors by the Wiener filter and the proposed colorimetric quality (Qc) agree quite well with the proposed model and we have shown that the estimation of the system noise variance of the image acquisition system is essential for the evaluation model. In this paper, it is confirmed that the proposed model can be applied to two different reflectance recovery models, and these models provide us an easy method for estimating the proposed colorimetric quality (Qc). The influence of the system noise originates from the sampling intervals of the spectral characteristics of the sensors, the illuminations and the reflectance and the quantization error on the evaluation model are studied and it is confirmed from the experimental results that the proposed model holds even in a noisy condition.

© 2009 Optical Society of America

OCIS Codes
(150.0150) Machine vision : Machine vision
(330.1690) Vision, color, and visual optics : Color
(330.1730) Vision, color, and visual optics : Colorimetry
(330.6180) Vision, color, and visual optics : Spectral discrimination

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: June 8, 2009
Revised Manuscript: August 26, 2009
Manuscript Accepted: September 4, 2009
Published: September 22, 2009

Mikiya Hironaga and Noriyuki Shimano, "Noise robustness of a colorimetric evaluation model for image acquisition devices with different characterization models," Appl. Opt. 48, 5354-5362 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Miyake and Y. Yokoyama, “Obtaining and reproduction of accurate color images based on human perception,” Proc. SPIE 3300, 190-197 (1998). [CrossRef]
  2. H. Haneishi, T. Hasegawa, N. A. Hosoi, Y. Yokoyama, N. Tsumura, and Y. Miyake, “System design for accurately estimating the spectral reflectance of art paintings,” Appl. Opt. 39, 6621-6632 (2000). [CrossRef]
  3. Y. Zhao, L. A. Taplin, M. Nezamabadi, and R. S. Berns, “Using the Matrix R Method for spectral image archives,” AIC Colour 05: 10th Congress of the International Colour Association, J. L. Nieves and J. Hernández-Andrés, eds. (AIC, 2005), pp. 469-472.
  4. K. Martinez, J. Cupitt, D. Saunders, and R. Pillay, “Ten years of art imaging research,” Proc. IEEE 90, 28-41 (2002). [CrossRef]
  5. A. A. Afifi and S. P. Azen, Statistical Analysis: A Computer Oriented Approach (Academic Press, 1972), Chap. 3.
  6. H. L. Shen and J. H. Xin, “Spectral characterization of a color scanner based on optimized adaptive estimation,” J. Opt. Soc. Am. A 23, 1566-1569 (2006). [CrossRef]
  7. D. Connah, J. Y. Hardeberg, and S. Westland, “Comparison of linear spectral reconstruction methods for multispectral imaging,” in ICIP '04, 2004 International Conference on Image Processing (IEEE, 2004), pp. 1497-1500. [CrossRef]
  8. Y. Zhao, L. A. Taplin, M. Nezamabadi, and R. S. Berns, “Methods of spectral reflectance reconstruction for a Sinarback 54 digital camera,” Munsell Color Science Laboratory, Tech. Rep. (December, 2004), pp. 1-36
  9. D. Connah and J. Y. Hardeberg, “Spectral recovery using polynomial models,” Proc. SPIE 5667, 65-75 (2005). [CrossRef]
  10. M. A. López-Álvarez, J. Hernández-Andrés, J. Romero, F. J. Olmo, A. Cazorla, and L. Alados-Arboledas, “Using a trichromatic CCD camera for spectral skylight estimation,” Appl. Opt. 47, H31-H38 (2008). [CrossRef] [PubMed]
  11. F. H. Imai and R. S. Berns, “Spectral estimation using trichromatic digital cameras,” in Proceeding of the International Symposium on Multispectral Imaging and Color Reproduction for Digital Archives (Society of Multispectral Imaging of Japan, 1999), pp. 42-49.
  12. M. A. López-Álvarez, J. Hernández-Andrés, Eva. M. Valero, and J. Romero, “Selecting algorithms, sensors and liner bases for optimum spectral recovery of skylight,” J. Opt. Soc. Am. A 24, 942-956 (2007). [CrossRef]
  13. V. Cheung, S. Westland, C. Li, J. Hardeberg, and D. Connah, “Characterization of trichromatic color cameras by using a new multispectral imaging technique,” J. Opt. Soc. Am. A 22, 1231-1240 (2005). [CrossRef]
  14. M. Shi and G. Healey, “Using reflectance models for color scanner calibration,” J. Opt. Soc. Am. A 19, 645-656(2002). [CrossRef]
  15. J. Cohen, “Dependency of spectral reflectance curves of the Munsell color chips,” Psychon. Sci. 1, 369-370(1964).
  16. L. T. Maloney, “Evaluation of linear models of surface spectral reflectance with small numbers of parameters,” J. Opt. Soc. Am. A 3, 1673-1683 (1986). [CrossRef] [PubMed]
  17. J. P. S. Parkkinen, J. Hallikainen, and T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318-322 (1989). [CrossRef]
  18. R. Piché, “Nonnegative color spectrum analysis filters from principal component analysis characteristic spectra,” J. Opt. Soc. Am. A 19, 1946-1950 (2002). [CrossRef]
  19. M. Mahy, P. Wambacq, L. Van Eycken, and A. Oosterlinck, “Optimal filters for the reconstruction and discrimination of reflectance curves,” in Second Color Imaging Conference: Color Science, Systems, and Applications (The Society for Imaging Science and Technology, 1994), pp. 140-143.
  20. P. S. Hung, “Colorimetric calibration for scanners and media,” Proc. SPIE 1448, 164-174 (1991). [CrossRef]
  21. H. R. Kang, “Colorimetric scanner calibration,” J. Imaging Sci. Technol. 36, 162-170 (1992).
  22. H. E. J. Neugebauer “Quality factor for filters whose spectral transmittances are different from color mixture curves, and its application to color photography,” J. Opt. Soc. Am. 46, 821-824 (1956). [CrossRef]
  23. P. L. Vora and H. J. Trussell, “Measure of goodness of a set of color-scanning filters,” J. Opt. Soc. Am. A 10, 1499-1508(1993). [CrossRef]
  24. G. Sharma and H. J. Trussell, “Figure of merit for color scanners,” IEEE Trans. Image Process. 6, 990-1001 (1997). [CrossRef]
  25. N. Shimano, “Suppression of noise effect in color corrections by spectral sensitivities of image sensors,” Opt. Rev. 9, 81-88(2002). [CrossRef]
  26. N. Shimano, “Optimization of spectral sensitivities with Gaussian distribution functions for a color image acquisition device in the presence of noise,” Opt. Eng. 45, 013201 (2006). [CrossRef]
  27. G. Sharma, H. J. Trussell, and M. J. Vrhel, “Optimal nonnegative color scanning filters,” IEEE Trans. Image Process. 7, 129-133 (1998). [CrossRef]
  28. N. Shimano, “Application of a colorimetric evaluation model to multispectral color image acquisition systems,” J. Imaging Sci. Technol. 49, 588-593 (2005).
  29. N. Shimano, “Evaluation of a multispectral image acquisition system aimed at reconstruction of spectral reflectances,” Opt. Eng. 44, 107005 (2005). [CrossRef]
  30. J. B. Cohen, “Color and color mixture: scalar and vector fundamentals,” Color Res. Appl. 13, 5-39 (1988). [CrossRef]
  31. W. A. Shapiro, “Generalization of tristimulus coordinates,” J. Opt. Soc. Am. 56, 795-801 (1966). [CrossRef]
  32. A. Rosenfeld and A. C. Kak, Digital Picture Processing, 2nd ed. (Academic Press, 1982).
  33. N. Shimano, “Recovery of spectral reflectances of objects being imaged without prior knowledge,” IEEE Trans. Image Process. 15, 1848-1856 (2006). [CrossRef]
  34. M. Hironaga and N. Shimano, “Evaluating the quality of an image acquisition device aimed at the reconstruction of spectral reflectances using recovery models,” J. Imaging Sci. Technol. 52, 030503 (2008). [CrossRef]
  35. G. H. Golub and C. F. V. Loan, Matrix Computations, 3rd ed. (Johns Hopkins University, 1996), p. 55.
  36. M. A. López-Álvarez, J. Hernández-Andrés, and J. Romero, “Developing an optimum computer-designed multispectral system comprising a monochrome CCD camera and a liquid-crystal tunable filter,” Appl. Opt. 47, 4381-4390 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited