OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 28 — Oct. 1, 2009
  • pp: 5396–5400

Hollow-fiber-based flexible probe for remote measurement of infrared attenuated total reflection

Yuji Matsuura, Saiko Kino, and Takashi Katagiri  »View Author Affiliations


Applied Optics, Vol. 48, Issue 28, pp. 5396-5400 (2009)
http://dx.doi.org/10.1364/AO.48.005396


View Full Text Article

Enhanced HTML    Acrobat PDF (416 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A hollow optical-fiber probe for infrared attenuated total reflection (ATR) spectroscopy is developed. A newly designed ATR prism, optimized for use with hollow optical fibers, is proposed. Results from preliminary experiments show the potential uses of the probe in clinical applications. The probe is appropriate for in vivo applications because it is consists of only nontoxic and chemically durable materials.

© 2009 Optical Society of America

OCIS Codes
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: March 12, 2009
Revised Manuscript: August 26, 2009
Manuscript Accepted: September 4, 2009
Published: September 25, 2009

Virtual Issues
Vol. 4, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Yuji Matsuura, Saiko Kino, and Takashi Katagiri, "Hollow-fiber-based flexible probe for remote measurement of infrared attenuated total reflection," Appl. Opt. 48, 5396-5400 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-28-5396


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Petibois and G. Deleris, “Chemical mapping of tumor progression by FT-IR imaging: towards molecular histopathology,” Trends Biotechnol. 24, 455-462 (2006). [CrossRef] [PubMed]
  2. M. J. Baker, E. Gazi, M. D. Brown, J. H. Shanks, P. Gardner, and N. W. Clarke, “FTIR-based spectroscopic analysis in the identification of clinically aggressive prostate cancer,” Br. J. Cancer 99, 1859-1866 (2008). [CrossRef] [PubMed]
  3. D. E. Maziak, M. T. Do, F. M. Shamji, S. R. Sundaresan, G. Perkins, and P. T. T. Wong, “Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer cells of esophagus: an exploratory study,” Cancer Detect. Prev. 31, 244-253 (2007). [CrossRef] [PubMed]
  4. R. Manoharan, J. J. Baraga, R. P. Rava, R. R. Dasari, M. Fitzmaurice, and M. S. Feld, “Biochemical analysis and mapping of atherosclerotic human artery using FT-IR microspectroscopy,” Atherosclerosis 103, 181-193 (1993). [CrossRef] [PubMed]
  5. N. I. Afanasyeva, R. Bruch, and A. Katzir, “Infrared fiber optic evanescent wave spectroscopy: application in biology and medicine,” Proc. SPIE 3596, 152-164 (1999). [CrossRef]
  6. P. A. West, M. P. G. Bostrom, P. A. Torzilli, and N. P. Camacho, “Fourier transform infrared spectral analysis of degenerative cartilage: an infrared fiber optic probe and imaging study,” Appl. Spectrosc. 58, 376-381 (2004). [CrossRef] [PubMed]
  7. Q. Li, Z. Xu, N. Zhang, L. Zhang, F. Wang, L. Yang, J. Wang, S. Zhou, Y. Zhang, X. Zhou, J. Shi, and J. Wu, “In vivo and in situ detection of colorectal cancer using Fourier transform infrared spectroscopy,” World J. Gastroenterol. 11, 327-330(2005). [PubMed]
  8. Y. Kanamori, Y. Terunuma, and Y. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607-613 (1984). [CrossRef]
  9. A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44-50 (1995). [CrossRef]
  10. D. A. Pinnow, A. L. Gentile, A. G. Standlee, A. J. Timper, and L. M. Hobrock, “Polycrystalline fiber optical waveguides for infrared transmission,” Appl. Phys. Lett. 33, 28-29(1978). [CrossRef]
  11. L. Grigorjeva, D. Millers, E. Kotomin, R. Eglitis, and A. A. Lerman, “Optical properties of silver halide fibres: ageing effects,” J. Phys. D 29, 578-583 (1996). [CrossRef]
  12. J. A. Harrington, Infrared Fibers and Their Applications (SPIE Press, 2003), pp. 139-194.
  13. S. Kino and Y. Matsuura, “Nontoxic and chemically stable hollow optical fiber probe for Fourier transform infrared spectroscopy,” Appl. Spectrosc. 61, 1334-1337 (2007). [CrossRef]
  14. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985), pp. 350-357.
  15. Y. Matsuura, Y. Shi, Y. Abe, M. Yaegashi, G. Takada, S. Mohri, and M. Miyagi, “Infrared-laser delivery system based on polymer-coated hollow fibers,” Opt. Laser Technol. 33, 279-283 (2001). [CrossRef]
  16. M. J. Van Nortwick, J. Hargrove, R. Wolters, J. M. Crawford, M. Arroyo, M. Mackanos, C. H. Contag, and T. D. Wang, “Fiber optic FTIR instrument for in vivo detection of colonic neoplasia,” Proc. SPIE 7172, 71720K(2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited