OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 28 — Oct. 1, 2009
  • pp: 5413–5422

Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO 2

Jérôme Caron and Yannig Durand  »View Author Affiliations


Applied Optics, Vol. 48, Issue 28, pp. 5413-5422 (2009)
http://dx.doi.org/10.1364/AO.48.005413


View Full Text Article

Enhanced HTML    Acrobat PDF (949 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Advanced Space Carbon and Climate Observation of Planet Earth (A-SCOPE) mission, a candidate for the next generation of European Space Agency Earth Explorer Core Missions, aims at measuring CO 2 concentration from space with an integrated path differential absorption (IPDA) lidar. We report the optimization of the lidar instrument operating wavelengths, building on two performance models developed to assess measurement random errors from the instrument, as well as knowledge errors on geophysical and spectral parameters required for the measurement processing. A promising approach to decrease sensitivity to water vapor errors by 1 order of magnitude is reported and illustrated. The presented methods are applicable for any airborne or spaceborne IPDA lidar.

© 2009 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.3640) Atmospheric and oceanic optics : Lidar
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: June 29, 2009
Revised Manuscript: August 27, 2009
Manuscript Accepted: September 7, 2009
Published: September 25, 2009

Citation
Jérôme Caron and Yannig Durand, "Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2," Appl. Opt. 48, 5413-5422 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-28-5413


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. “A-SCOPE--Advanced Space Carbon and Climate Observation of Planet Earth, Report For Assessment,” ESA-SP1313/1 (European Space Agency, 2008), http://esamultimedia.esa.int/docs/SP1313-1_ASCOPE.pdf.
  2. Orbiting Carbon Observatory (OCO), http://oco.jpl.nasa.gov/.
  3. Global Greenhouse Gas Observation by Satellite (GOSAT), http://www.gosat.nies.go.jp/.
  4. E. Dufour and F. M. Breon, “Spaceborne estimate of atmospheric CO2 column by use of the differential absorption method: error analysis,” Appl. Opt. 42, 3595-3609 (2003). [CrossRef] [PubMed]
  5. J. Caron, Y. Durand, J.-L. Bezy, and R. Meynart, “Performance modeling for A-SCOPE, a spaceborne lidar measuring atmospheric CO2,” Proc. SPIE7479 (in press).
  6. Reference Model of the Atmosphere, issued for A-SCOPE assessment study (ESA internal document, 2007, available on request).
  7. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and Hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998). [CrossRef]
  8. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005). [CrossRef]
  9. R. A. Toth, L. R. Brown, C. E. Miller, V. M. Devi, and D. C. Benner, “Spectroscopic database of CO2 line parameters,” J. Quant. Spectrosc. Radiat. Transfer 109, 906-921 (2008). [CrossRef]
  10. Atmospheric profiles (temperature, pressure, water vapor) are taken from G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, “AFGL Atmospheric Constituent Profiles (0-120 km),” AFGL-TR-86-0110 (Air Force Geophysics Laboratory, (1986).
  11. R. M. Schotland, “Errors in the lidar measurement of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71-77 (1974). [CrossRef]
  12. E. E. Remsberg and L. L. Gordley, “Analysis of differential absorption lidar from the Space Shuttle,” Appl. Opt. 17, 624-630 (1978). [CrossRef] [PubMed]
  13. A. Amediek, A. Fix, G. Ehret, J. Caron, and Y. Durand, “Airborne lidar reflectance measurements at 1.57 microns in support of the A-SCOPE mission for atmospheric CO2,” Atmos. Meas. Tech. Discuss. 2, 1487-1536 (2009). [CrossRef]
  14. A. Amediek, A. Fix, M. Wirth, and G. Ehret, “Development of an OPO system at 1.57 μm for integrated path DIAL measurement of atmospheric carbon dioxide,” Appl. Phys. B 92, 295-302 (2008). [CrossRef]
  15. InGaAs APD Ref. 30645 (Perkin Elmer).
  16. G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593-608 (2008). [CrossRef]
  17. L. Joly, F. Gibert, B. Grouiez, A. Grossel, B. Parvitte, G. Durry, and V. Zeninari, “A complete study of CO2 line parameters around 4845 cm−1 for Lidar applications,” J. Quant. Spectrosc. Radiat. Transfer 109, 426-434 (2008). [CrossRef]
  18. R. T. Menzies and D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements,” Appl. Opt. 42, 6569-6577 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited