OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 28 — Oct. 1, 2009
  • pp: 5423–5431

Laser power stabilization using optical ac coupling and its quantum and technical limits

Patrick Kwee, Benno Willke, and Karsten Danzmann  »View Author Affiliations


Applied Optics, Vol. 48, Issue 28, pp. 5423-5431 (2009)
http://dx.doi.org/10.1364/AO.48.005423


View Full Text Article

Enhanced HTML    Acrobat PDF (743 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate an active power stabilization of a Nd:YAG laser employing the optical ac-coupling scheme and derive its fundamental quantum limit. This limit is 3 dB better than the one encountered in traditional power stabilization schemes. In our experiment, the optical ac coupling improved the shot-noise-limited sensitivity of the stabilization photodetector by a factor of 11.2. With an independent photodetector, we measured a relative power stability of 3.7 × 10 9 Hz 1 / 2 at frequencies of around 200 kHz . A detailed investigation of the performance limit of our experiment revealed a novel noise source that disturbed the fundamental mode field in the optical resonator. This effect could be of relevance to many precision experiments using optical resonators.

© 2009 Optical Society of America

OCIS Codes
(040.5160) Detectors : Photodetectors
(230.5750) Optical devices : Resonators
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: July 6, 2009
Manuscript Accepted: September 2, 2009
Published: September 25, 2009

Citation
Patrick Kwee, Benno Willke, and Karsten Danzmann, "Laser power stabilization using optical ac coupling and its quantum and technical limits," Appl. Opt. 48, 5423-5431 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-28-5423


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Rowan and J. Hough, “Gravitational wave detection by interferometry (ground and space),” Living Rev. Relativity 3 (2000), http://www.livingreviews.org/lrr-2000-3.
  2. K. Somiya, Y. Chen, S. Kawamura, and N. Mio, “Frequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes,” Phys. Rev. D 73, 122005 (2006). [CrossRef]
  3. B. Willke, K. Danzmann, M. Frede, P. King, D. Kracht, P. Kwee, O. Punken, R. Savage, B. Schulz, F. Seifert, C. Veltkamp, S. Wagner, P. Weßels, and L. Winkelmann, “Stabilized high power lasers for advanced gravitational wave detectors,” Class. Quantum Grav. 25, 114040 (2008). [CrossRef]
  4. F. Seifert, P. Kwee, M. Heurs, B. Willke, and K. Danzmann, “Laser power stabilization for second-generation gravitational wave detectors,” Opt. Lett. 31, 2000-2002 (2006). [CrossRef] [PubMed]
  5. J. Rollins, D. Ottaway, M. Zucker, R. Weiss, and R. Abbott, “Solid-state laser intensity stabilization at the 10−8 level,” Opt. Lett. 29, 1876-1878 (2004). [CrossRef] [PubMed]
  6. N. Mio, H. Takahashi, and S. Moriwaki, “High-power photo-detection system for next-generation gravitational wave detectors,” J. Phys. Conf. Ser. 122, 012014 (2008). [CrossRef]
  7. P. Kwee, B. Willke, and K. Danzmann, “Optical ac coupling to overcome limitations in the detection of optical power fluctuations,” Opt. Lett. 33, 1509-1511 (2008). [CrossRef] [PubMed]
  8. T. Klaassen, J. de Jong, M. van Exter, and J. Woerdman, “Transverse mode coupling in an optical resonator,” Opt. Lett. 30, 1959-1961 (2005). [CrossRef] [PubMed]
  9. H.-A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics (Wiley-VCH, 2004), Chap. 8.3. [CrossRef]
  10. M. Taubman, H. Wiseman, D. McClelland, and H. Bachor, “Intensity feedback effects on quantum-limited noise,” J. Opt. Soc. Am. B 12, 1792-1800 (1995). [CrossRef]
  11. A. E. Siegman, Lasers (University Science, 1986), Chap. 11.
  12. I. Freitag, A. Tünnermann, and H. Welling, “Power scaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts,” Opt. Commun. 115, 511-515 (1995). [CrossRef]
  13. E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69, 79-87(2001). [CrossRef]
  14. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983). [CrossRef]
  15. B. Willke, N. Uehara, E. Gustafson, R. L. Byer, P. J. King, S. U. Seel, and R. L. Savage, “Spatial and temporal filtering of a 10 w Nd:Yag laser with a Fabry-Perot ring-cavity premode cleaner,” Opt. Lett. 23, 1704-1706 (1998). [CrossRef]
  16. T. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441-444 (1980). [CrossRef]
  17. N. Uehara, E. K. Gustafson, M. M. Fejer, and R. L. Byer, “Modeling of efficient mode-matching and thermal-lensing effect on a laser-beam coupling into a mode-cleaner cavity,” Proc. SPIE 2989, 57-68 (1997). [CrossRef]
  18. T. Klaassen, M. van Exter, and J. Woerdman, “Characterization of scattering in an optical Fabry-Perot resonator,” Appl. Opt. 46, 5210-5215 (2007). [CrossRef] [PubMed]
  19. P. Fritschel, “Second generation instruments for the Laser Interferometer Gravitational Wave Observatory (LIGO),” Proc. SPIE 4856, 282-291 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited