Influence of exponential doping structure on the performance of GaAs photocathodes
Applied Optics, Vol. 48, Issue 29, pp. 5445-5450 (2009)
http://dx.doi.org/10.1364/AO.48.005445
Enhanced HTML Acrobat PDF (535 KB)
Abstract
Obtaining higher quantum efficiency and more stable GaAs photocathodes has been an important developmental direction in the investigation of GaAs photocathodes. One significant approach to this problem is to improve the electron diffusion length. We put forward and investigate an exponential doping mode GaAs photocathode. It was proved by theoretical and experimental results that, because the exponential doping structure is in favor of forming a directional constant built-in electric field, the electron diffusion and drift length of the cathode material can accordingly be enhanced. The mathematical expression of the electron diffusion and drift length
© 2009 Optical Society of America
OCIS Codes
(160.2100) Materials : Electro-optical materials
(250.0250) Optoelectronics : Optoelectronics
ToC Category:
Materials
History
Original Manuscript: April 30, 2009
Revised Manuscript: July 9, 2009
Manuscript Accepted: August 26, 2009
Published: October 1, 2009
Citation
Jun Niu, Yijun Zhang, Benkang Chang, Zhi Yang, and Yajuan Xiong, "Influence of exponential doping structure on the performance of GaAs photocathodes," Appl. Opt. 48, 5445-5450 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-29-5445
Sort: Year | Journal | Reset
References
- Y. Beauvais, J. Chautemps, and P. D. Groot, “LLL TV imaging with GaAs photocathode/CCD detector,” Adv. Electron. Electron Phys. 64A, 267-274 (1995).
- H. K. Pollehn, “Performance and reliability of third-generation image intensifiers,” Adv. Electron. Electron Phys. 64A, 61-69 (1995).
- W. Enloe, R. Scheldon, L. Reed, and A. Amith, “An electron-bombarded CCD image intensifier with a GaAs photocathodes,” Proc. SPIE 1655, 41-49 (1992).
- T. W. Sinor, J. P. Estrera, D. L. Philips, and M. K. Rector, “Extended blue GaAs image intensifiers,” Proc. SPIE 2551, 130-134 (1995).
- J. P. Estrera, E. J. Bender, A. Giordana, J. W. Glesener, M. J. Iosue, P. P. Lin, and T. W. Sinor, “Long lifetime generation IV image intensifiers with unfilmed microchannel plate,” Proc. SPIE 4128, 46-53 (2000).
- Y. Z. Liu, Z. C. Wang, and Y. Q. Dong, Electron Emission and Photocathodes (Academic, 1995).
- X. Q. Du, B. K. Chang, and Y. J. Du, “Influences of performance parameters of GaAs/AlGaAs materials on photoemission,” Proc. SPIE 5209, 201-208 (2003).
- X. Q. Du, B. K. Chang, J. J. Zou, and M. Li, “High quantum efficiency GaAs photocathode by gradient doping,” Acta Opt. Sin. 25, 1411-1414 (2005).
- J. J. Zou, B. K. Chang, and Z. Yang, “Theoretical calculation of quantum yield for exponential-doping GaAs photocathode,” Acta Phys. Sin. 56, 2992-2997 (2007).
- J. J. Zou and B. K. Chang, “Gradient doping negative electron affinity GaAs photocathodes,” Opt. Eng. 45, 054001(2006).
- Z. Yang, B. K. Chang, J. J. Zou, J. L. Qiao, P. Gao, Y. P. Zeng, and H. Li, “Comparison between gradient-doping GaAs photocathode and uniform-doping photocathode,” Appl. Opt. 46, 7035-7039 (2007). [CrossRef]
- G. A. Antypas, L. W. James, and J. J. Uebbing, “Operation of III-V semiconductor photocathodes in the semitransparent mode,” J. Appl. Phys. 41, 2888-2894 (1970). [CrossRef]
- Y. Z. Liu, J. L. Moll, and W. E. Spicer, “Quantum yield of GaAs semitransparent photocathodes,” Appl. Phys. Lett. 17, 60-62(1970). [CrossRef]
- Y. Z. Liu, C. D. Hollish, and W. W. Stein, “LPE GaAs/(Ga,Al)As/GaAs transmission photocathodes and a simplified formula for transmission,” J. Appl. Phys. 44, 5619-5622(1973).
- E. K. Liu, B. S. Zhu, and J. S. Luo, Semiconducting Physics (Academic, 2003).
- J. J. Zou, B. K. Chang, H. L. Chen, and L. Liu, “Variation of quantum yield curves of GaAs photocathodes under illumination,” J. Appl. Phys. 101, 033126 (2007). [CrossRef]
- Z. L. Xie, K. Qiu, Z. J. Yin, X. H. Fang, J. L. Chen, and Z. H. Jiang, “Optimization MBE technology growth of AlGaAs/GaAs modulation doped structure,” Micronanoelectronic Technol. 8, 22-25 (2002).
- Y. P. Zeng, X. Cao, L. J. Cui, M. Y. Kong, L. Pan, B. Q. Wang, and Z. P. Zhu, “High quality metamophic HEMT grown on GaAs substrates by MBE,” J. Cryst. Growth 210, 227-228(2001).
- J. J. Zou, B. K. Chang, and X. Q. Du, “Activation of gradient doping GaAs photocathodes grown by molecular beam epitaxy,” J. Vac. Sci. Technol. 25, 401-404 (2005).
- J. J. Zou, Z. Yang, J. L. Qiao, P. Gao, and B. K. Chang, “Activation experiments and quantum efficiency theory on gradient-doping GaAs photocathodes,” Proc. SPIE 6782, 67822R (2007).
- A. A. Turnbull and G. B. Evans, “Photoemission from GaAs─Cs─O,” J. Phys. D 1, 155-160 (1968).
- D. G. Fisher, “The effect of Cs─O activation temperature on the surface escape probability of NEA (In,Ga) As photocathodes,” IEEE Trans. Electron Devices 21, 541-542(1974). [CrossRef]
- R. G. Fu, B. K. Chang, Y. S. Qian, G. H. Wang, and Z. Y. Zong, “The evaluation system of negative electron affinity photocathode,” Proc. SPIE 4580, 614-622 (2001).
- B. K. Chang, X. Q. Du, L. Liu, Z. Y. Zong, R. G. Fu, and Y. S. Qian, “The automatic recording system of dynamic spectral response and its applications,” Proc. SPIE 5209, 209-218(2003).
- J. J. Zou, L. Feng, G. Y. Lin, Y. T. Rao, Z. Yang, Y. S. Qian, and B. K. Chang, “On-line measurement system of GaAs photocathodes and its application,” Proc. SPIE 6782, 67823D(2007).
- Y. S. Qian, Z. Y. Zong, and B. K. Chang, “Measurement of spectral response of photocathodes and its application,” Proc. SPIE 4580, 486-495 (2001).
- Z. Y. Zong, Y. S. Qian, and B. K. Chang, “Analysis of on-line measured spectral responses of NEA photocathodes,” Proc. SPIE 4580, 623-631 (2001).
- Z. Yang, B. K. Chang, J. J. Zou, H. Wang, and P. Gao, “High-performance MBE GaAs photocathode,” Proc. SPIE 6352, 635237 (2006).
- I. Kudman and T. Seidel, “Absorption edge in degenerate p-type GaAs,” J. Appl. Phys. 33, 771-773 (1962). [CrossRef]
Cited By |
Alert me when this paper is cited |
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
« Previous Article | Next Article »
OSA is a member of CrossRef.