OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 29 — Oct. 10, 2009
  • pp: 5467–5474

Characterization of picosecond pulse nonlinear propagation in chalcogenide As 2 S 3 fiber

C. Xiong, E. Magi, F. Luan, A. Tuniz, S. Dekker, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton  »View Author Affiliations


Applied Optics, Vol. 48, Issue 29, pp. 5467-5474 (2009)
http://dx.doi.org/10.1364/AO.48.005467


View Full Text Article

Enhanced HTML    Acrobat PDF (899 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We characterize the nonlinear propagation of picosecond pulses in chalcogenide As 2 S 3 single-mode fiber using a pump-probe technique. The cross-phase modulation (XPM)-induced sideband broadening and stimulated Raman scattering (SRS)-induced sideband amplification are measured in order to map out the Raman gain spectrum of this glass across the C-band. We extract the Raman response function from the Raman gain spectrum and determine the power and polarization dependence of the SRS. In contrast to previous work using As 2 Se 3 fiber, we find that the As 2 S 3 fiber does not suffer from large two-photon absorption (TPA) in the wavelength range of the telecommunications band. We achieved a 20 dB peak Raman gain at a Stokes shift of 350 cm 1 in a 205 mm length of As 2 S 3 single-mode fiber. The Raman gain coefficient is estimated to be 4.3 × 10 12 m / W and the threshold pump peak power is estimated to be 16.2 W for the 205 mm As 2 S 3 fiber. We also demonstrate that we can infer the dispersion of the As 2 S 3 fiber and justify the Raman response function by comparing simulation and experimental results.

© 2009 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.0190) Nonlinear optics : Nonlinear optics
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 1, 2009
Revised Manuscript: August 3, 2009
Manuscript Accepted: September 4, 2009
Published: October 1, 2009

Citation
C. Xiong, E. Magi, F. Luan, A. Tuniz, S. Dekker, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, "Characterization of picosecond pulse nonlinear propagation in chalcogenide As2S3 fiber," Appl. Opt. 48, 5467-5474 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-29-5467

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited