OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 29 — Oct. 10, 2009
  • pp: 5467–5474

Characterization of picosecond pulse nonlinear propagation in chalcogenide As 2 S 3 fiber

C. Xiong, E. Magi, F. Luan, A. Tuniz, S. Dekker, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton  »View Author Affiliations


Applied Optics, Vol. 48, Issue 29, pp. 5467-5474 (2009)
http://dx.doi.org/10.1364/AO.48.005467


View Full Text Article

Enhanced HTML    Acrobat PDF (899 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We characterize the nonlinear propagation of picosecond pulses in chalcogenide As 2 S 3 single-mode fiber using a pump-probe technique. The cross-phase modulation (XPM)-induced sideband broadening and stimulated Raman scattering (SRS)-induced sideband amplification are measured in order to map out the Raman gain spectrum of this glass across the C-band. We extract the Raman response function from the Raman gain spectrum and determine the power and polarization dependence of the SRS. In contrast to previous work using As 2 Se 3 fiber, we find that the As 2 S 3 fiber does not suffer from large two-photon absorption (TPA) in the wavelength range of the telecommunications band. We achieved a 20 dB peak Raman gain at a Stokes shift of 350 cm 1 in a 205 mm length of As 2 S 3 single-mode fiber. The Raman gain coefficient is estimated to be 4.3 × 10 12 m / W and the threshold pump peak power is estimated to be 16.2 W for the 205 mm As 2 S 3 fiber. We also demonstrate that we can infer the dispersion of the As 2 S 3 fiber and justify the Raman response function by comparing simulation and experimental results.

© 2009 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.0190) Nonlinear optics : Nonlinear optics
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 1, 2009
Revised Manuscript: August 3, 2009
Manuscript Accepted: September 4, 2009
Published: October 1, 2009

Citation
C. Xiong, E. Magi, F. Luan, A. Tuniz, S. Dekker, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, "Characterization of picosecond pulse nonlinear propagation in chalcogenide As2S3 fiber," Appl. Opt. 48, 5467-5474 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-29-5467


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Frerichs, “New optical glasses with good transparency in the infrared,” J. Opt. Soc. Am. 43, 1153-1157 (1953). [CrossRef]
  2. W. S. Rodney, I. H. Malitson and T. A. King, “Refractive index of arsenic trisulfide,” J. Opt. Soc. Am. 48, 633-636 (1958). [CrossRef]
  3. G. Lucovsky, “Optic modes in amorphous As2S3 and As2Se3,” Phys. Rev. B 6, 1480-1489 (1972). [CrossRef]
  4. R. J. Kobliska and S. A. Solin, “Temperature dependence of the Raman spectrum and the depolarization spectrum of amorphous As2S3,” Phys. Rev. B 8, 756-768 (1973). [CrossRef]
  5. R. L. Fork, C. V. Shank, A. M. Glass, A. Migus, M. A. Bosch, and J. Shah, “Picosecond dynamics of optically induced absorption in the band gap of As2S3,” Phys. Rev. Lett. 43, 394-398 (1979). [CrossRef]
  6. H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, “Third-harmonic generation from some chalcogenide glasses,” J. Am. Ceram. Soc. 73, 1794-1796 (1990). [CrossRef]
  7. M. Asobe, K. Suzuki, T. Kanamori, and K. Kubodera, “Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase modulation,” Appl. Phys. Lett. 60, 1153-1154 (1992). [CrossRef]
  8. H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683-3687 (1993). [CrossRef]
  9. M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, “Third-order nonlinear spectroscopy in As2S3 chalcogenide glass fibers,” J. Appl. Phys. 77, 5518-5523 (1995). [CrossRef]
  10. H. Kanbara, S. Fujiwara, K. Tanaka, H. Nasu, and K. Hirao, “Third-order nonlinear optical properties of chalcogenide glasses,” Appl. Phys. Lett. 70, 925-927 (1997). [CrossRef]
  11. M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142-148 (1997). [CrossRef]
  12. J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256, 6-16 (1999). [CrossRef]
  13. K. Tanaka, “Two-photon absorption spectroscopy of As2S3 glass,” Appl. Phys. Lett. 80, 177-179 (2002). [CrossRef]
  14. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1-12 (2003). [CrossRef]
  15. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21, 1146-1155 (2004). [CrossRef]
  16. W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies,” J. Appl. Phys. 98, 053503 (2005). [CrossRef]
  17. O. P. Kulkarni, C. Xia, D. J. Lee, M. Kumar, A. Kuditcher, M. N. Islam, F. L. Terry, Jr., B. G. Aitken, S. C. Currie, J. E. McCarthy, M. L. Powley, and D. A. Nolan, “Third order cascaded Raman wavelength shifting in chalcogenide fibers and determination of Raman gain coefficient,” Opt. Express 14, 7924-7930 (2006). [CrossRef]
  18. A. Tuniz, G. Brawley, D. J. Moss, and B. J. Eggleton, “Two-photon absorption effects on Raman gain in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 16, 18524-18534 (2008). [CrossRef]
  19. T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” IEEE J. Lightwave Technol. 2, 607-613 (1984). [CrossRef]
  20. J. S. Sanghera, L. E. Busse, and I. D. Aggatwal, “Effect of scattering centers on the optical loss of As2S3 glass fibers in the infrared,” J. Appl. Phys. 75, 4885-4891 (1994). [CrossRef]
  21. J. S. Sanghera and I. D. Aggarwal, “Development of chalcogenide glass fiber optics at NRL,” J. Non-Cryst. Solids 213, 63-67(1997). [CrossRef]
  22. J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627-640 (2001).
  23. K. Tanaka, N. Toyosawa, and H. Hisakuni, “Photoinduced Bragg gratings in As2S3 optical fibers,” Opt. Lett. 20, 1976-1978 (1995). [CrossRef]
  24. G. A. Brawley, V. G. Ta'eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett. 44, 846-847(2008). [CrossRef]
  25. M. Asobe, T. Kanamori, and K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber,” IEEE Photonics Technol. Lett. 4, 362-365 (1992). [CrossRef]
  26. M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325-2333 (1993). [CrossRef]
  27. M. Asobe, H. Itoh, T. Miyazawa, and T. Kanamori, “Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide glass fibre,” Electron. Lett. 29, 1966-1968(1993). [CrossRef]
  28. M. Asobe, H. Kobayashi, and H. Itoh, “Laser-diode-driven ultrafast all-optical switching by using highly nonlinear chalcogenide glass fiber,” Opt. Lett. 18, 1056-1058 (1993). [CrossRef]
  29. S. D. Jackson and G. Anzueto-Sánchez, “Chalcogenide glass Raman fiber laser,” Appl. Phys. Lett. 88, 221106 (2006). [CrossRef]
  30. Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, “Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching,” Opt. Express 12, 5140-5145 (2004). [CrossRef]
  31. S. J. Madden, D-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta'eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15, 14414-14421 (2007). [CrossRef]
  32. E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15, 10324-10329 (2007). [CrossRef]
  33. V. G. Ta'eed, M. D. Pelusi, B. J. Eggleton, D-Y. Choi, S. Madden, D. Bulla, and B. Luther-Davies, “Broadband wavelength conversion at 40 Gb/s using long serpentine As2S3planar waveguides,” Opt. Express 15, 15047-15052 (2007). [CrossRef]
  34. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16, 20374-20381 (2008). [CrossRef]
  35. F. Luan, M. D. Pelusi, M. R. E. Lamont, D-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17, 3514-3520 (2009). [CrossRef]
  36. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ=10/W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16, 14938-14944 (2008). [CrossRef]
  37. D. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33, 660-662 (2008). [CrossRef]
  38. M. D. Pelusi, F. Luan, E. Magi, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16, 11506-11512 (2008). [CrossRef]
  39. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photon. doi:10.1038/nphoton.2009.001 (2009). [CrossRef]
  40. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, Elsevier, 2006).
  41. Q. Lin and Govind P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. 31, 3086-3088 (2006). [CrossRef]
  42. Y. Ruan, B. Luther-Davies, W. Li, A. Rode, V. Kolev, and S. Madden, “Large phase shifts in As2S3 waveguides for all-optical processing devices,” Opt. Lett. 30, 2605-2607 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited