OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 29 — Oct. 10, 2009
  • pp: 5475–5483

Laser diode absorption spectroscopy for accurate CO 2 line parameters at 2 μm : consequences for space-based DIAL measurements and potential biases

Lilian Joly, Fabien Marnas, Fabien Gibert, Didier Bruneau, Bruno Grouiez, Pierre H. Flamant, Georges Durry, Nicolas Dumelie, Bertrand Parvitte, and Virginie Zéninari  »View Author Affiliations

Applied Optics, Vol. 48, Issue 29, pp. 5475-5483 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (521 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Space-based active sensing of CO 2 concentration is a very promising technique for the derivation of CO 2 surface fluxes. There is a need for accurate spectroscopic parameters to enable accurate space-based measurements to address global climatic issues. New spectroscopic measurements using laser diode absorption spectroscopy are presented for the preselected R30 CO 2 absorption line ( ( 20 0 1 ) I I I ( 000 ) band) and four others. The line strength, air-broadening halfwidth, and its temperature dependence have been investigated. The results exhibit significant improvement for the R30 CO 2 absorption line: 0.4% on the line strength, 0.15% on the air-broadening coefficient, and 0.45% on its temperature dependence. Analysis of potential biases of space-based DIAL CO 2 mixing ratio measurements associated to spectroscopic parameter uncertainties are presented.

© 2009 Optical Society of America

OCIS Codes
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar
(300.6260) Spectroscopy : Spectroscopy, diode lasers

ToC Category:
Remote Sensing and Sensors

Original Manuscript: June 22, 2009
Revised Manuscript: September 11, 2009
Manuscript Accepted: September 11, 2009
Published: October 1, 2009

Lilian Joly, Fabien Marnas, Fabien Gibert, Didier Bruneau, Bruno Grouiez, Pierre H. Flamant, Georges Durry, Nicolas Dumelie, Bertrand Parvitte, and Virginie Zéninari, "Laser diode absorption spectroscopy for accurate CO2 line parameters at 2 μm: consequences for space-based DIAL measurements and potential biases," Appl. Opt. 48, 5475-5483 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. IPCC Fourth Assessment Report: Climate Change 2007-- The Physical Science Basis (Cambridge U, Press, 2007).
  2. F. Miglietta, B. Gioli, R. W. A. Hutjes, and M. Reichstein, “Net regional ecosystem CO2 exchange from airborne and ground-based eddy-covariance, land-use maps and weather observations,” Glob. Change Biol. 01219, doi:10.1111/j.1365-2486.2006 (2007). [CrossRef]
  3. P. J. Rayner and D. M. O'Brien, “The utility of remotely sensed CO2 concentration data in surface source inversions,” Geophys. Res. Lett. 28, 175 (2001). [CrossRef]
  4. Atmospheric Infrared Sounder (AIRS), airs.jpl.nasa.gov.
  5. “Scanning imaging absorption spectrometer for atmospheric chartography (SCIAMACHY),” www-iup.physik.uni-bremen.de/sciamachy.
  6. “Greenhouse gases observing satellite “IBUKI” (GOSAT),” www.jaxa.jp/projects/sat/gosat/index_e.html.
  7. G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2,” Appl. Opt. 43, 5092-5099 (2004). [CrossRef] [PubMed]
  8. F. Gibert, P. H. Flamant, D. Bruneau., and C. Loth, “Two micrometer heterodyne differential absorption lidar measurements of the atmospheric CO2 mixing ratio in the boundary layer,” Appl. Opt. 45, 4448 (2006). [CrossRef] [PubMed]
  9. F. Gibert, P. H. Flamant, J. Cuesta, and D. Bruneau. “Vertical 2 μm heterodyne differential absorption lidar measurements of mean CO2 mixing ratio in the troposphere,” J. Atmos. Ocean. Technol. 25, 1477-1499 (2008). [CrossRef]
  10. “Active sensing of CO2 emission over nights, days, and seasons (ASCENDS),” cce.nasa.gov/ascends.
  11. “Advanced space carbon and climate observation of planet Earth (A-SCOPE),” report for assessment (2008), www.esa.int/esaLP/SEMUE0AWYNF_LPearthexp_0.html.
  12. C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314, doi:10.1029/2006JD007659, (2007). [CrossRef]
  13. R. T. Menzies and D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements,” Appl. Opt. 42, 6569-6577 (2003). [CrossRef] [PubMed]
  14. V. Zéninari, B. Parvitte, L. Joly, T. Le Barbu, N. Amarouche, and G. Durry, “Laboratory spectroscopic calibration of infrared tunable laser spectrometers for the in situ sensing of the Earth and Martian atmospheres,” Appl. Phys. B 85, 265-272 (2006). [CrossRef]
  15. L. Joly, F. Gibert, B. Grouiez, A. Grossel, B. Parvitte, G. Durry, and V. Zéninari, “A complete study of line parameters around 4845 cm−1 for lidar applications,” J. Quant. Spectrosc. Radiat. Transfer 109, 426-434 (2008). [CrossRef]
  16. L. Joly, B. Parvitte, V. Zéninari, and G. Durry, “Development of a compact CO2 sensor open to the atmosphere and based on near-infrared laser technology at 2.68 micron,” Appl. Phys. B 86, 743-748 (2007). [CrossRef]
  17. G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and NwO by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B. 90, 593-608 (2008). [CrossRef]
  18. G. J. Koch, J. Y. Beyond, F. Gibert, B. W. Barnes, S. Ismail, M. Petros, P. J. Petzar, J. Yu, E. A. Modlin, K. J. Davisand, and U. N. Singh, “Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements,” Appl. Opt. 47, 944-956 (2008). [CrossRef] [PubMed]
  19. J. Yu., B. C. Trieu, E. A. Modlin, U. N. Singh, M. J. Kavaya, S. Chen, Y. Bai, P. J. Petzar, and M. Petros, “1 J/pluse Q-switched 2 μm solid state laser,” Opt. Lett. 31, 462-464 (2006). [CrossRef] [PubMed]
  20. M. Raybaut, A. Berrou, A. Godard, A. Mohamed, M. Lefebvre, F. Marnas, D. Edouart, P. Flamant, A. Bohman, P. Geiser, and P. Kaspersen, “High brightness 2 μm source based on a type II doubly resonant ECOPO,” presented at the Advanced Solid State Photonics: 2009 OSA Optics and Photonics Congress, Denver, Colorado, USA, 1-4 Feb. 2009.
  21. A. Amediek, A. Fix, M. Wirth, and G. Ehret, “Development of an OPO system at 1.57 μm for integrated path DIAL measurement of atmospheric carbon dioxide,” Appl. Phys. B 92, 295-302 (2008). [CrossRef]
  22. D. Sakaizawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, M. Nakazato, and T. Sakai, “Development of a 1.6 μm differential absorption lidar with a quasi phase-matching optical parametric oscillator and photon-counting detector for the vertical CO2 profile,” Appl. Opt. 48, 748-757 (2009). [CrossRef] [PubMed]
  23. D. Bruneau, F. Gibert, P. H. Flamant, and J. Pelon, “Complementary study of differential absorption lidar optimization in direct and heterodyne detection,” Appl. Opt. 45, 4898-4906(2006). [CrossRef] [PubMed]
  24. L. S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005). [CrossRef]
  25. L. Regalia-Jarlot, V. Zéninari, B. Parvitte, A. Grossel, X. Thomas, P. Von Dr Heydden, and G. Durry, “A complete study of the line intensities of four bands of CO2 around 1.6 and 2.0 μm: A comparison between Fourier transform and diode laser measurements,” J. Quant. Spectrosc. Radiat. Transfer 101, 325-336 (2006). [CrossRef]
  26. R. A. Toth, L. R. Brown, C. E. Miller, V. M. Devi, and D. C. Benner, “Line strengths of 12C16O2:4550-7000 cm−1,” J. Mol. Spectrosc. 239, 221-242 (2006). [CrossRef]
  27. R. A. Toth, L. R. Brown, C. E. Miller, V. M. Devi, and D. C. Benner, “Spectroscopic database of CO2 line parameters: 4300-7000 cm−1,” J. Quant. Spectrosc. Radiat. Transfer 109, 906-921 (2008). [CrossRef]
  28. V. Zéninari, A. Vicet, B. Parvitte, L. Joly, and G. Durry, “In situ sensing of atmospheric CO2 with laser diodes near 2.05 μm: a spectroscopic study,” Infrared Phys. Technol. 45, 229-237(2004). [CrossRef]
  29. R. A. Toth, C. E. Miller, V. M. Devi, D. C. Benner, and L. R. Brown, “Air broadened halfwidth and pressure shift coefficients of 12C16O2 bands: 4750−7000 cm−1,” J. Mol. Spectrosc. 246, 133-157 (2007). [CrossRef]
  30. J. Humlicek, “An efficient method for evaluation of the complex probability function. The Voigt function and its derivative,” J. Quant. Spectrosc. Radiat. Transfer 21, 309-313(1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited