OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 29 — Oct. 10, 2009
  • pp: 5546–5560

Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments

Gregory B. Rieker, Jay B. Jeffries, and Ronald K. Hanson  »View Author Affiliations


Applied Optics, Vol. 48, Issue 29, pp. 5546-5560 (2009)
http://dx.doi.org/10.1364/AO.48.005546


View Full Text Article

Enhanced HTML    Acrobat PDF (993 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a practical implementation of calibration-free wavelength-modulation spectroscopy with second harmonic detection (WMS- 2 f ) for measurements of gas temperature and concentration in harsh environments. The method is applicable to measurements using lasers with synchronous wavelength and intensity modulation (such as injection current-tuned diode lasers). The key factors that enable mea surements without the on-site calibration normally associated with WMS are (1) normalization of the WMS- 2 f signal by the first harmonic ( 1 f ) signal to account for laser intensity, and (2) the inclusion of laser-specific tuning characteristics in the spectral-absorption model that is used to compare with measured 1 f -normalized, WMS- 2 f signals to infer gas properties. The uncertainties associated with the calibration-free WMS method are discussed, with particular emphasis on the influence of pressure and optical depth on the WMS signals. Many of these uncertainties are also applicable to calibrated WMS measurements. An example experimental setup that combines six tunable diode laser sources between 1.3 and 2.0 μm into one probe beam for measurements of temperature, H 2 O , and CO 2 is shown. A hybrid combination of wavelength and frequency demultiplexing is used to distinguish among the laser signals, and the optimal set of laser-modulation waveforms is presented. The system is demonstrated in the harsh environment of a ground-test scramjet combustor. A comparison of direct absorption and 1 f -normalized, WMS- 2 f shows a factor of 4 increase in signal-to-noise ratio with the WMS technique for measurements of CO 2 in the supersonic flow. Multidimensional computational fluid-dynamics (CFD) calculations are compared with measurements of temperature and H 2 O using a simple method that accounts for the influence of line-of-sight (LOS) nonuniformity on the absorption measurements. The comparisons show the ability of the LOS calibration-free technique to gain useful information about multidimensional CFD models.

© 2009 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(120.6780) Instrumentation, measurement, and metrology : Temperature
(300.1030) Spectroscopy : Absorption
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(300.6380) Spectroscopy : Spectroscopy, modulation

ToC Category:
Spectroscopy

History
Original Manuscript: June 15, 2009
Revised Manuscript: September 1, 2009
Manuscript Accepted: September 3, 2009
Published: October 5, 2009

Citation
Gregory B. Rieker, Jay B. Jeffries, and Ronald K. Hanson, "Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments," Appl. Opt. 48, 5546-5560 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-29-5546


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. D. Hinkley and P. L. Kelley, “Detection of air pollutants with tunable diode lasers,” Science 171, 635-639 (1971). [CrossRef]
  2. R. K. Hanson and P. K. Falcone, “Temperature measurement technique for high temperature gases using a tunable diode laser,” Appl. Opt. 17, 2477-2480 (1978). [CrossRef]
  3. M. Lackner, “Tunable diode laser spectroscopy (TDLAS) in the process industries--a review,” Rev. Chem. Eng. 23, 65 (2007).
  4. P. A. Martin, “Near-infrared diode laser spectroscopy in chemical process and environmental air monitoring,” Chem. Soc. Rev. 31, 201-210 (2002). [CrossRef]
  5. P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta 54, 197-236 (1998). [CrossRef]
  6. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545-562 (1998). [CrossRef]
  7. R. K. Hanson and J. B. Jeffries, “Diode laser sensors for ground testing,” in Proceedings of the Twenty-Fifth American Institute of Aeronautics and Astronautics Aerodynamic Measurement Technology and Ground Testing Conference, AIAA 2006-3441 (American Institute of Aeronautics and Astronautics, 2006).
  8. We refer here to the frequency of the modulation sinusoid, not the modulation amplitude (which is sometimes also reported in frequency units).
  9. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707-717 (1992). [CrossRef]
  10. D. S. Bomse, A. C. Stanton, and J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718-731 (1992). [CrossRef]
  11. T. Fernholz, H. Teichert, and V. Ebert, “Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions,” Appl. Phys. B 75, 229-236 (2002). [CrossRef]
  12. J. T. C. Liu, G. B. Rieker, J. B. Jeffries, M. R. Gruber, C. D. Carter, T. Mathur, and R. K. Hanson, “Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor,” Appl. Opt. 44, 6701-6711 (2005). [CrossRef]
  13. G. B. Rieker, J. B. Jeffries, R. K. Hanson, T. Mathur, M. R. Gruber, and C. D. Carter, “Diode laser-based detection of combustor instabilities with application to a scramjet engine,” Proc. Combust. Inst. 32, 831-838 (2009). [CrossRef]
  14. G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” Proc. Combust. Inst. 31, 3041-3049 (2007). [CrossRef]
  15. J. Gustafsson, N. Chekalin, and O. Axner, “Improved detectability of wavelength modulation diode laser absorption spectrometry applied to window-equipped graphite furnaces by 4th and 6th harmonic detection,” Spectrochim. Acta B 58, 111-122 (2003). [CrossRef]
  16. R. T. Wainner, B. D. Green, M. G. Allen, M. A. White, J. Stafford-Evans, and R. Naper, “Handheld, battery-powered near-IR TDL sensor for stand-off detection of gas and vapor plumes,” Appl. Phys. B 75, 249-254 (2002). [CrossRef]
  17. J. A. Silver and D. J. Kane, “Diode laser measurements of concentration and temperature in microgravity combustion,” Meas. Sci. Technol. 10, 845-852 (1999). [CrossRef]
  18. S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37 mm,” Appl. Phys. B 92, 393-401 (2008). [CrossRef]
  19. J. Henningsen and H. Simonsen, “Quantitative wavelength-modulation without certified gas mixtures,” Appl. Phys. B 70, 627-633 (2000). [CrossRef]
  20. K. Duffin, A. J. McGettrick, W. Johnstone, G. Stewart, and D. G. Moodie, “Tunable diode laser spectroscopy with wavelength modulation: a calibration-free approach to the recovery of absolute gas absorption line-shapes,” J. Lightwave Technol. 25, 3114-3125 (2007). [CrossRef]
  21. A. J. McGettrick, K. Duffin, W. Johnstone, G. Stewart, and D. G. Moodie, “Tunable diode laser spectroscopy with wavelength modulation: a phasor decomposition method for calibration-free measurements of gas concentration and pressure,” J. Lightwave Technol. 26, 432-440 (2008). [CrossRef]
  22. D. T. Cassidy and J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1185-1190 (1982). [CrossRef]
  23. K. Uehara and H. Tai, “Remote detection of methane with a 1.66 μm diode laser,” Appl. Opt. 31, 809-814 (1992). [CrossRef]
  24. T. Iseki, H. Tai, and K. Kimura, “A portable remote methane sensor using a tunable diode laser,” Meas. Sci. Technol. 11, 594-602 (2000). [CrossRef]
  25. H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45, 1052-1060 (2006). [CrossRef]
  26. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005). [CrossRef]
  27. G. B. Rieker, X. Liu, H. Li, J. B. Jeffries, and R. K. Hanson, “Measurements of near-IR water vapor absorption at high pressure and temperature,” Appl. Phys. B 87, 169-178 (2007). [CrossRef]
  28. G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 mm and implications on tunable diode laser sensor design,” Appl. Phys. B 94, 51-63 (2009). [CrossRef]
  29. G. B. Rieker, H. Li, X. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, and H. S. Kindle, “A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures,” Meas. Sci. Technol. 18, 1195-1204(2007). [CrossRef]
  30. M. R. Gruber, J. Donbar, K. Jackson, T. Mathur, R. Baurle, D. Eklund, and C. Smith, “Newly developed direct-connect high-enthalpy supersonic combustion research facility,” J. Propul. Power 17, 1296-1304 (2001). [CrossRef]
  31. cos (α) represents a frequency component of the detector signal and cos (β) represents the reference sinusoid. If β is chosen to be 2πfot, where fo=2f, then the frequency components of the detector signal with αβ (i.e., components near 2f) will be shifted to αβ≈0, and become the DC output of the lock-in.
  32. J. H. Scofield, “A frequency-domain description of a lock-in amplifier,” Am. J. Phys. 62, 129-133 (1994). [CrossRef]
  33. P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803-5815 (1999). [CrossRef]
  34. J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers--comparison of experiment and theory,” Appl. Phys. B 26, 203-210 (1981). [CrossRef]
  35. L. C. Philippe and R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090-6103 (1993). [CrossRef]
  36. J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B 78, 503-511 (2004). [CrossRef]
  37. P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, “Wavlength modulation absorption spectrometry--an extensive scrutiny of the generation of signals,” Spectrochim. Acta B 56, 1277-1354 (2001). [CrossRef]
  38. S. Schilt, L. Thevenaz, and P. Robert, “Wavelength modulation spectroscopy: combined frequency and intensity laser modulation,” Appl. Opt. 42, 6728-6738 (2003). [CrossRef]
  39. X. Liu, J. B. Jeffries, and R. K. Hanson, “Measurements of spectral parameters of water-vapour transitions near 1388 and 1345 nm for accurate simulation of high-pressure absorption spectra,” Meas. Sci. Technol. 18, 1185-1194 (2007). [CrossRef]
  40. O. Axner, J. Gustafsson, F. M. Schmidt, N. Omenetto, and J. D. Winefordner, “A discussion about the significance of absorbance and sample optical thickness in conventional spectrometry and wavelength-modulated laser absorption spectrometry,” Spectrochim. Acta B Spectrochim. Acta B 58, 1997-2014 (2003). [CrossRef]
  41. J. M. Seitzman and B. T. Scully, “Broadband infrared absorption sensor for high-pressure combustor control,” J. Propul. Power 16, 994-1001 (2000). [CrossRef]
  42. S. T. Sanders, J. Wang, J. B. Jeffries, and R. K. Hanson, “Diode-laser absorption sensor for line-of-sight gas temperature distributions,” Appl. Opt. 40, 4404-4415 (2001). [CrossRef]
  43. X. Liu, J. B. Jeffries, and R. K. Hanson, “Measurement of nonuniform temperature distributions using line-of-sight absorption spectroscopy,” AIAA J. 45, 411-419 (2007). [CrossRef]
  44. D. B. Oh, M. E. Paige, and D. S. Bomse, “Frequency modulation multiplexing for simultaneous detection of multiple gases by use of wavelength modulation spectroscopy with diode lasers,” Appl. Opt. 37, 2499-2501 (1998). [CrossRef]
  45. M. R. Gruber, C. D. Carter, M. Ryan, G. B. Rieker, J. B. Jeffries, R. K. Hanson, J. Liu, and T. Mathur, “Laser-based measurements of OH, temperature, and water vapor concentration in a hydrocarbon-fueled scramjet,” in Proceedings of Forty-Fourth American Institute of Aeronautics and Astronautics/American Society of Mechanical Engineers/Society of Automotive Engineers/American Society for Engineering Education Joint Propulsion Conference and Exhibit, AIAA 2008-5070 (American Institute of Aeronautics and Astronautics, 2008).
  46. G. J. Koch, A. L. Cook, C. M. Fitzgerald, and A. N. Dharamsi, “Frequency stabilization of a diode laser to absorption lines of water vapor in the 944 nm wavelength region,” Opt. Eng. 40, 525-528 (2001). [CrossRef]
  47. R. Matthey, S. Schilt, D. Werner, C. Affolderbach, L. Thevenaz, and G. Mileti, “Diode laser frequency stabilisation for water-vapour differential absorption sensing,” Appl. Phys. B 85, 477-485 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited