OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 29 — Oct. 10, 2009
  • pp: 5567–5582

Retrieval of snow physical parameters using a ground-based spectral radiometer

Katsuyuki Kuchiki, Teruo Aoki, Tomonori Tanikawa, and Yuji Kodama  »View Author Affiliations


Applied Optics, Vol. 48, Issue 29, pp. 5567-5582 (2009)
http://dx.doi.org/10.1364/AO.48.005567


View Full Text Article

Enhanced HTML    Acrobat PDF (2358 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A ground-based spectral radiometer system for albedo and flux (GSAF) was developed to retrieve a mass concentration of snow impurities and effective snow grain size automatically. The GSAF measures spectral albedo and diffuse fraction with a single sensor to omit a radiometric calibration. The deviation from an ideal cosine response of the sensor to insolation is precisely corrected. The snow physical parameters can be retrieved with the GSAF even under cloudy conditions, because the effect of illumination conditions on albedo is considered in a retrieval algorithm. Continuous measurements with the GSAF at two snowfields in Hokkaido, Japan, showed the correlations between the retrieved parameters and in situ measurements ( R = 0.595 to 0.940).

© 2009 Optical Society of America

OCIS Codes
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: May 13, 2009
Revised Manuscript: September 7, 2009
Manuscript Accepted: September 14, 2009
Published: October 6, 2009

Citation
Katsuyuki Kuchiki, Teruo Aoki, Tomonori Tanikawa, and Yuji Kodama, "Retrieval of snow physical parameters using a ground-based spectral radiometer," Appl. Opt. 48, 5567-5582 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-29-5567


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. J. Wiscombe and S. G. Warren, “A model for the spectral albedo of snow. I: Pure snow,” J. Atmos. Sci. 37, 2712-2733(1980). [CrossRef]
  2. S. G. Warren and W. J. Wiscombe, “A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols,” J. Atmos. Sci. 37, 2734-2745 (1980). [CrossRef]
  3. Te. Aoki, Ta. Aoki, M. Fukabori, Y. Tachibana, Y. Zaizen, F. Nishio, and T. Oishi, “Spectral albedo observation on the snow field at Barrow, Alaska,” Polar Meteorol. Glaciol. 12, 1-9 (1998).
  4. Te. Aoki, Ta. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, and F. Nishio, “Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface,” J. Geophys. Res. 105, 10219-10236 (2000). [CrossRef]
  5. Te. Aoki, A. Hachikubo, and M. Hori, “Effects of snow physical parameters on shortwave broadband albedos,” J. Geophys. Res. 108, 4616, doi:10.1029/2003JD003506 (2003). [CrossRef]
  6. H. Motoyoshi, Te. Aoki, M. Hori, O. Abe, and S. Mochizuki, “Possible effect of anthropogenic aerosol deposition on snow albedo reduction at Shinjo, Japan,” J. Meteorol. Soc. Jpn. 83A, 137-146 (2005). [CrossRef]
  7. Te. Aoki, H. Motoyoshi, Y. Kodama, T. J. Yasunari, and K. Sugiura, “Variations of the snow physical parameters and their effects on albedo in Sapporo, Japan,” Ann. Glaciol. 46, 375-381 (2007). [CrossRef]
  8. G. S. W. Hagler, M. H. Bergin, E. A. Smith, J. E. Dibb, C. Anderson, and E. J. Steig, “Particulate and water-soluble carbon measured in recent snow at Summit, Greenland,” Geophys. Res. Lett. 34, doi:10.1029/2007GL030110 (2004). [CrossRef]
  9. T. C. Grenfell, S. G. Warren, and P. C. Mullen, “Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths,” J. Geophys. Res. 99, 18669-18684 (1994). [CrossRef]
  10. T. C. Grenfell and S. G. Warren, “Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation,” J. Geophys. Res. 104, 31697-31709 (1999). [CrossRef]
  11. A. W. Nolin and J. Dozier, “Estimating snow grain size using AVIRIS data,” Remote Sens. Environ. 44, 231-238 (1993). [CrossRef]
  12. M. Fily, B. Bourdelles, J. P. Dedieu, and C. Sergent, “Comparison of in situ and Landsat Thematic Mapper derived snow grain characteristics in the alps,” Remote Sens. Environ. 59, 452-460 (1997). [CrossRef]
  13. W. Li, K. Stamnes, B. Chen, and X. Xiong, “Snow grain size retrieved from near-infrared radiances at multiple wavelengths,” Geophys. Res. Lett. 28, 1699-1702 (2001). [CrossRef]
  14. T. A. Scambos, T. M. Haran, M. A. Fahnestock, T. H. Painter, and J. Bohlander, “Continent-wide surface morphology and snow grain size,” Remote Sens. Environ. 111, 242-257(2007). [CrossRef]
  15. Z. Jin, T. P. Charlock, P. Yang, Y. Xie, and W. Miller, “Snow optical properties of different particles shapes with application to snow grain size retrieval and MODIS/CERES radiance comparison over Antarctica,” Remote Sens. Environ. 112, 3563-3581 (2008). [CrossRef]
  16. T. Tanikawa, Te. Aoki, and F. Nishio, “Remote sensing of snow grain-size and impurities from Airborne Multispectral Scanner data using a snow bidirectional reflectance distribution function model,” Ann. Glaciol. 34, 74-80 (2002). [CrossRef]
  17. K. Stamnes, W. Li, H. Eide, Te. Aoki, M. Hori, and R. Storvold, “ADEOS-II/GLI snow/ice products----Part I: Scientific basis,” Remote. Sens. Environ. 111, 258-273 (2007). [CrossRef]
  18. M. Hori, Te. Aoki, K. Stamnes, and W. Li, “ADEOS-II/GLI snow/ice products----Part III: Retrieved results,” Remote. Sens. Environ. 111, 291-336 (2007). [CrossRef]
  19. C. Leroux, J. Deuzé, P. Goloub, C. Sergent, and M. Fily, “Ground measurements of the polarized bidirectional reflectance of snow in the near-infrared spectral domain: comparisons with model results,” J. Geophys. Res. 103, 19721-19731(1998). [CrossRef]
  20. T. Tanikawa, Te. Aoki, M. Hori, A. Hachikubo, and M. Aniya, “Snow bidirectional reflectance model using non-spherical snow particles and its validation with fields measurements,” EARSeL eProceedings 5, 137-145 (2006).
  21. S. G. Warren, R. E. Brandt, and P. O. Hinton, “Effect of surface roughness on bidirectional reflectance of Antarctic snow,” J. Geophys. Res. 103, 25789-25807 (1998). [CrossRef]
  22. S. G. Warren, “Optical properties of snow,” Rev. Geophys. Space Phys. 20, 67-89 (1982). [CrossRef]
  23. Te. Aoki, Ta. Aoki, M. Fukabori, and A. Uchiyama, “Numerical simulation of the atmospheric effects on snow albedo with a multiple scattering radiative transfer model for the atmosphere-snow system,” J. Meteorol. Soc. Jpn. 77, 595-614(1999).
  24. T. Yamanouchi, “Variations of incident solar flux and snow albedo on the solar zenith angle and cloud cover, at Mizuho station, Antarctica,” J. Meteorol. Soc. Jpn. 61, 879-893 (1983).
  25. S. Asano, M. Shiobara, Y. Nakanishi, and Y. Miyake, “A multichannel cloud pyranometer system for airborne measurement of solar spectral reflectance by cloud,” J. Atmos. Ocean. Technol. 12, 479-487 (1995). [CrossRef]
  26. M. D. Steven, “Standard distributions of clear sky radiance,” Q. J. R. Meteorol. Soc. 103, 457-465 (1977). [CrossRef]
  27. M. D. Steven and M. H. Unsworth, “The angular distribution and interception of diffuse solar radiation below overcast skies,” Q. J. R. Meteorol. Soc. 106, 57-61 (1980). [CrossRef]
  28. M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831-844 (1998). [CrossRef]
  29. G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, AFGL Atmospheric Constituent Profiles (0-120 km) (Air Force Geophys. Lab., 1986). [PubMed]
  30. T. H. Painter and J. Dozier, “Measurements of the hemispherical-directional reflectance of snow at fine spectral and angular resolution,” J. Geophys. Res. 109, doi:10.1029/2003JD004458 (2004). [CrossRef]
  31. S. G. Warren and R. E. Brandt, “Optical constants of ice from the ultraviolet to the microwave: a revised compilation,” J. Geophys. Res. 113, D14220, doi:10.1029/2007JD009744 (2008). [CrossRef]
  32. T. Tanikawa, Te. Aoki, M. Hori, A. Hachikubo, O. Abe, and M. Aniya, “Monte Carlo simulations of spectral albedo for artificial snowpacks composed of spherical and nonspherical particles,” Appl. Opt. 45, 5310-5319 (2006). [CrossRef] [PubMed]
  33. J. J. Huntzicker, R. L. Johnson, J. J. Shah, and R. A. Cary, “Analysis of organic and elemental carbon in ambient aerosol by a thermal-optical method,” in Particulate Carbon-Atmospheric Life Cycle, G.T.Wolff and R.L.Klimisch, eds. (Plenum, 1982), pp. 79-88.
  34. J. C. Chow, J. G. Watson, L. C. Pritchett, W. R. Pierson, C. A. Frazier, and R. G. Purcell, “The DRI thermal/optical reflectance carbon analysis system: description, evaluation and applications in U.S. Air Quality Studies,” Atmos. Environ. 27, 1185-1201 (1993). [CrossRef]
  35. Te. Aoki, M. Hori, H. Motoyoshi, T. Tanikawa, A. Hachikubo, K. Sugiura, T. J. Yasunari, R. Storvold, H. A. Eide, K. Stamnes, W. Li, J. Nieke, Y. Nakajime, and F. Takahashi, “ADEOS-II/GLI snow/ice products----Part II: Validation results using GLI and MODIS data,” Remote Sens. Environ. 111, 274-290(2007). [CrossRef]
  36. M. Ishizaka, “New categories for the climatic division of snowy areas in Japan,” Ann. Glaciol. 26, 131-137 (1998).
  37. J. G. Watson, J. C. Chow, and L. W. A. Chen, “Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons,” Aerosol Air Qual. Res. 5, 65-102(2005).
  38. M. O. Andreae and A. Gelencser, “Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols,” Atmos. Chem. Phys. 6, 3131-3148 (2006). [CrossRef]
  39. T. C. Grenfell and L. Bonnie, “Spatial distribution and radiative effects of soot in the snow and sea ice during SHEBA experiment,” J. Geophys. Res. 107, 8032, doi: 10.1029/2000JC000414 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited