OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 29 — Oct. 10, 2009
  • pp: 5604–5611

Simultaneous identification of the low-field-induced tiny variation of complex refractive index for anisotropic and opaque magnetic-fluid thin film by a stable heterodyne Mach–Zehnder interferometer

Chin-Yih Hong, Jen-Jie Chieh, Shieh-Yueh Yang, Hong-Chang Yang, and Herng-Er Horng  »View Author Affiliations


Applied Optics, Vol. 48, Issue 29, pp. 5604-5611 (2009)
http://dx.doi.org/10.1364/AO.48.005604


View Full Text Article

Enhanced HTML    Acrobat PDF (914 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We use a heterodyne Mach–Zehnder interferometer to simultaneously and simply measure the complex refractive index by only normal incidence on the specimen, instead of using a complicated measurement procedure or instrument that only measures the real or imaginary part of the complex refractive index. To study the tiny variation of the complex refractive index, the small complex refractive-index variation of a rare-concentration magnetic-fluid thin film, due to a weak field of less than 200 Oe , was processed by this interferometer. We also present the wavelength trend of the complex refractive index of magnetic fluids to verify the appearance of the slight change in a small wavelength range.

© 2009 Optical Society of America

OCIS Codes
(260.1440) Physical optics : Birefringence
(260.2110) Physical optics : Electromagnetic optics
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Interferometry

History
Original Manuscript: March 26, 2009
Revised Manuscript: September 1, 2009
Manuscript Accepted: September 9, 2009
Published: October 7, 2009

Citation
Chin-Yih Hong, Jen-Jie Chieh, Shieh-Yueh Yang, Hong-Chang Yang, and Herng-Er Horng, "Simultaneous identification of the low-field-induced tiny variation of complex refractive index for anisotropic and opaque magnetic-fluid thin film by a stable heterodyne Mach-Zehnder interferometer," Appl. Opt. 48, 5604-5611 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-29-5604


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. W. Huang, S. T. Hu, S. Y. Yang, H. E. Horng, J. C. Hung, C. Y. Hong, H. C. Yang, C. H. Chao, and C. F. Lin, “Tunable diffraction of magnetic fluid films and its potential application in coarse wavelength-division multiplexing,” Opt. Lett. 29, 1867-1869 (2004). [CrossRef] [PubMed]
  2. H. E. Horng, J. J. Chieh, Y. H. Chao, S. Y. Yang, C. Y. Hong, and H. C. Yang, “Designing optical-fiber modulators by using magnetic fluids,” Opt. Lett. 30, 543-545 (2005). [CrossRef] [PubMed]
  3. H. E. Horng, C. S. Chen, K. L. Fang, S. Y. Yang, J. J. Chieh, C. Y. Hong, and H. C. Yang, “Tunable optical switch using magnetic fluids,” Appl. Phys. Lett. 85, 5592-5594(2004). [CrossRef]
  4. C. Y. Hong, S. Y. Yang, K. L. Fang, H. E. Horng, and H. C. Yang, “Mach-Zehnder interferometer by utilizing phase modulation of transmitted light through magnetic fluid films possessing tunable refractive index,” J. Magn. Magn. Mater. 297, 71-75(2006). [CrossRef]
  5. D. Jamon, S. Robert, F. Donatini, J. J. Rousseau, C. Bovier, H. Roux, J. Serrughetti, V. Cabuil, and D. Zins, “Optical investigation of γ−Fe2O3 nanoparticle-doped silica gel matrix for birefringent components,” IEEE Trans. Magn. 37, 3803-3806(2001). [CrossRef]
  6. M. Saito, N. Matsumoto, and J. Nishimura, “Measurement of the complex refractive-index spectrum for birefringent and absorptive liquids,” Appl. Opt. 37, 5169-5175(1998). [CrossRef]
  7. S. Pu, X. Chen, Y. Chen, W. Liao, L. Chen, and Y. Xia, “Measurement of the refractive index of a magnetic fluid by the retroreflection on the fiber-optic end face,” Appl. Phys. Lett. 86, 171904 (2005). [CrossRef]
  8. S. Y. Yang, Y. F. Chen, H. E. Horng, C. Y. Hong, W. S. Tse, and H. C. Yang, “Magnetically-modulated refractive index of magnetic fluid films,” Appl. Phys. Lett. 81, 4931-4933(2002). [CrossRef]
  9. N. Inaba, H. Miyajima, H. Takahashi, S. Taketomi, and S. Chikazumi, “Magneto-optical absorption in infrared region for magnetic fluid thin film,” IEEE Trans. Magn. 25, 3866-1989 (1989). [CrossRef]
  10. J. J. Chieh, S. Y. Yang, H. E. Horng, C. Y. Hong, and H. C. Yang, “Measurements of the complex transmission/reflection coefficient of a material using mixed-type common-path heterodyne interferometery,” IEEE Trans. Instrum. Meas. . 58, 1878-1885 (2009). [CrossRef]
  11. J. J. Chieh, Y. P. Chen, C. Y. Hong, S. Y. Yang, H. E. Horng, and H. C. Yang, “Characterization of UV-modulated dielectric constant of ZnO thin films,” Optoelectron. Adv. Mater. Rapid Commun. 2, 81-84 (2008).
  12. S. Y. Yang, J. J. Chieh, H. E. Horng, C. Y. Hong, and H. C. Yang, “Origin and applications of magnetically tunable refractive index of magnetic fluid films,” Appl. Phys. Lett. 84, 5204-5206(2004). [CrossRef]
  13. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1960).
  14. R. Dandliker, “Heterodyne holographic interferometry,” in Progress in Optics, E. Wolf, ed. (North Holland, 1980), Vol. XVII.
  15. F. Rickermann, S. Riehemann, G. von Bally, S. Breer, and K. Buse, “A high resolution real-time temporal heterodyne interferometer for refractive index topography,” Opt. Commun. 144, 173-179 (1997). [CrossRef]
  16. C. L. Mitsas and D. I. Siapkas, “Generalized matrix method for analysis of coherent and incoherent reflectance and transmittance of multilayer structures with rough surfaces, interfaces, and finite substrates,” Appl. Opt. 34, 1678-1683(1995). [CrossRef] [PubMed]
  17. D. K. Ghodgaonkar, V. V. Varadan, and V. K. Varadan, “Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies,” IEEE Trans. Instrum. Meas. 39, 387-394 (1990). [CrossRef]
  18. P. Schiebener, J. Straub, J. M. H. L. Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677-717 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited