OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 29 — Oct. 10, 2009
  • pp: 5629–5635

Absolute frequency measurement of the molecular iodine hyperfine components near 560 nm with a solid-state laser source

J. Zhang, Z. H. Lu, and L. J. Wang  »View Author Affiliations


Applied Optics, Vol. 48, Issue 29, pp. 5629-5635 (2009)
http://dx.doi.org/10.1364/AO.48.005629


View Full Text Article

Enhanced HTML    Acrobat PDF (790 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report absolute frequency measurements of the molecular iodine R(34) 20-0 a 1 , a 10 , and a 15 hyperfine transitions, and the P(144) 23-0 a 1 hyperfine transition at 560 nm with a frequency comb. The light source is based on an all-solid-state frequency quadrupled laser system. A frequency stability of 4 × 10 12 is achieved over a 100 s integration time when the light source is frequency stabilized to the R(34) 20-0 a 1 line. The pressure and power broadening dependences of the R(34) 20-0 a 10 line are also investigated.

© 2009 Optical Society of America

OCIS Codes
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6390) Spectroscopy : Spectroscopy, molecular
(300.6460) Spectroscopy : Spectroscopy, saturation

ToC Category:
Spectroscopy

History
Original Manuscript: July 22, 2009
Manuscript Accepted: September 16, 2009
Published: October 7, 2009

Citation
J. Zhang, Z. H. Lu, and L. J. Wang, "Absolute frequency measurement of the molecular iodine hyperfine components near 560 nm with a solid-state laser source," Appl. Opt. 48, 5629-5635 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-29-5629


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103-133 (2003). [CrossRef]
  2. R. Felder, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003),” Metrologia 42, 323-325 (2005). [CrossRef]
  3. The data for the various recommended radiations are updated on the BIPM website (www.bipm.org/en/publications/mep.html).
  4. S. Gerstenkorn and P. Luc, “Atlas Du Spectre D'Absorption de la Molecule D'Iode, 14000 cm−1-15600 cm−1,” Laboratoire Aim Cotton, CNRS II, 91405 Orsay, France, 1978.
  5. S. Gerstenkorn and P. Luc, “Atlas Du Spectre D'Absorption de la Molecule D'Iode, 15600 cm−1-17000 cm−1,” Laboratoire Aim Cotton, CNRS II, 91405 Orsay, France, 1977.
  6. S. Gerstenkorn and P. Luc, “Atlas Du Spectre D'Absorption de la Molecule D'Iode, 17500 cm−1-20000 cm−1,” Laboratoire Aim Cotton, CNRS II, 91405 Orsay, France, 1977.
  7. S. Gerstenkorn, J. Verges, and J. Chevillard, “Atlas Du Spectre D'Absorption de la Molecule D'Iode, 11000 cm−1-14000 cm−1,” Laboratoire Aim Cotton, CNRS II, 91405 Orsay, France, 1982.
  8. S. Gerstenkorn and P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B-X) system,” J. Phys. (Paris) 46, 867-881(1985). [CrossRef]
  9. F. du Burck, C. Daussy, A. Amy-Klein, A. N. Goncharov, O. Lopez, C. Chardonnet, and J.-P. Wallerand, “Frequency measurement of an Ar+ laser stabilized on narrow lines of molecular iodine at 501.7 nm,” IEEE Trans. Instrum. Meas. 54, 754-758 (2005). [CrossRef]
  10. H. J. Foth and F. Spieweck, “Hyperfine structure of the R(98), 58-1 line of I2127 at 514.5 nm,” Chem. Phys. Lett. 65, 347-352(1979). [CrossRef]
  11. R. J. Jones, W. Y. Cheng, K. W. Holman, L. Chen, J. L. Hall, and J. Ye, “Absolute-frequency measurement of the iodine-based length standard at 514.67 nm,” Appl. Phys. B 74, 597-601(2002). [CrossRef]
  12. J.-P. Wallerand, L. Robertsson, L.-S. Ma, and M. Zucco, “Absolute frequency measurement of molecular iodine lines at 514.7 nm, interrogated by a frequency-doubled Yb-doped fiber laser,” Metrologia 43, 294-298 (2006). [CrossRef]
  13. A. Arie and R. L. Byer, “Laser heterodyne spectroscopy of I2127 hyperfine structure near 532 nm,” J. Opt. Soc. Am. B 10, 1990-1997 (1993). [CrossRef]
  14. P. A. Jungner, S. Swartz, M. Eickhoff, J. Ye, J. L. Hall, and S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32-0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151-154 (1995). [CrossRef]
  15. J. Ye, L. Robertsson, S. Picard, L. -S. Ma, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544-549 (1999). [CrossRef]
  16. G. Galzerano, C. Svelto, E. Bava, and F. Bertinetto, “High-frequency-stability diode-pumped Nd:YAG lasers with the FM sidebands method and Doppler-free iodine lines at 532 nm,” Appl. Opt. 38, 6962-6966 (1999). [CrossRef]
  17. F.-L. Hong and J. Ishikawa, “Hyperfine structures of the R(122)35-0 and P(84)33-0 transitions of I2127 near 532 nm,” Opt. Commun. 183, 101-108 (2000). [CrossRef]
  18. J.-M. Chartier, S. Fredin-Picard, and L. Robertsson, “Frequency-stabilized 543 nm HeNe laser systems: a new candidate for the realization of the metre?,” Opt. Commun. 74, 87-92 (1989). [CrossRef]
  19. P. C. Pastor, P. Zeppini, A. Arie, P. D. Natale, G. Giusfredi, G. Rosenman, and M. Inguscio, “Sub-Doppler spectroscopy of molecular iodine around 541 nm with a novel solid state laser source,” Opt. Commun. 176, 453-458 (2000). [CrossRef]
  20. W.-Y. Cheng and J.-T. Shy, “Wavelength standard at 543 nm and the corresponding I2127 hyperfine transitions,” J. Opt. Soc. Am. B 18, 363-369 (2001). [CrossRef]
  21. L. S. Ma, S. Picard, M. Zucco, J. -M. Chartier, L. Robertsson, P. Balling, P. Krìn, J. Qian, Z. Liu, C. Shi, M. V. Alonso, G. Xu, S. L. Tan, K. Nyholm, J. Henningsen, J. Hald, W. R. C. Rowley, G. P. Barwood, and R. Windeler, “Absolute frequency measurement of the R(12)26-0 and R(106)28-0 transitions in I2127at λ=543 nm,” IEEE Trans. Instrum. Meas. 55, 876-880(2006). [CrossRef]
  22. S. Reinhardt, G. Saathoff, S. Karpuk, C. Novotny, G. Huber, M. Zimmermann, R. Holzwarth, T. Udem, T. W. Hänsch, and G. Gwinner, “Iodine hyperfine structure and absolute frequency measurements at 565, 576, and 585 nm,” Opt. Commun. 261, 282-290 (2006). [CrossRef]
  23. F.-L. Hong, H. Inaba, K. Hosaka, M. Yasuda, and A. Onae, “Doppler-free spectroscopy of molecular iodine using a frequency-stable light source at 578 nm,” Opt. Express 17, 1652-1659 (2009). [CrossRef] [PubMed]
  24. H. Talvitie, M. Merimaa, and E. Ikonen, “Frequency stabilization of a diode laser to Doppler-free spectrum of molecular iodine at 633 nm,” Opt. Commun. 152, 182-188 (1998). [CrossRef]
  25. J. Lazar, O. Číp, and P. Jedlička, “Tunable extended-cavity diode laser stabilization on iodine at λ=633 nm,” Appl. Opt. 39, 3085-3088 (2000). [CrossRef]
  26. H. R. Simonsen and F. Rose, “Absolute measurement of the hyperfine splittings of six molecular I2127 lines around the He−Ne/I2 wavelength at λ≈633 nm,” Metrologia 37, 651-658 (2000). [CrossRef]
  27. J. E. Bernard, A. A. Madej, K. J. Siemsen, and L. Marmet, “Absolute frequency measurement of the He−Ne/I2 standard at 633 nm,” Opt. Commun. 187, 211-218 (2001). [CrossRef]
  28. S. Shen, Y. Ni, J. Qian, Z. Liu, C. Shi, J. An, L. Wang, S. Iwasaki, J. Ishikawa, F.-L. Hong, H. S. Suh, J. Labot, A. Chartier, and J.-M. Chartier, “International comparisons of He-Ne lasers stabilized with I2127 at λ≈633 nm (1997),” Metrologia 38, 181-186 (2001). [CrossRef]
  29. C. S. Edwards, G. P. Barwood, P. Gill, F. Rodríguez-Llorente, and W. R. C. Rowley, “Frequency-stabilized diode lasers in the visible region using Doppler-free iodine spectra,” Opt. Commun. 132, 94-100 (1996). [CrossRef]
  30. S. Reinhardt, B. Bernhardt, C. Geppert, R. Holzwarth, G. Huber, S. Karpuk, N. Miski-Oglu, W. Nörtershäuser, C. Novotny, and Th. Udem, “Absolute frequency measurements and comparisons in iodine at 735 nm and 772 nm,” Opt. Commun. 274, 354-360 (2007). [CrossRef]
  31. A. Razet and S. Picard, “A tabulation of calculations of the hyperfine structure in I2127,” Metrologia 33, 19-27 (1996). [CrossRef]
  32. C. J. Sansonetti, “Precise measurements of hyperfine components in the spectrum of molecular iodine,” J. Opt. Soc. Am. B 14, 1913-1920 (1997). [CrossRef]
  33. I. Velchev, R. van Dierendonck, W. Hogervorst, and W. Ubachs, “A dense grid of reference iodine lines for optical frequency calibration in the range 571-596 nm,” J. Mol. Spectrosc. 187, 21-27 (1998). [CrossRef] [PubMed]
  34. S. C. Xu, R. van Dierendonck, W. Hogervorst, and W. Ubachs, “A dense grid of reference iodine lines for optical frequency calibration in the range 595-655 nm,” J. Mol. Spectrosc. 201, 256-266 (2000). [CrossRef] [PubMed]
  35. B. Bodermann, H. Knöckel, and E. Tiemann, “Widely usable interpolation formulae for hyperfine splittings in the I2127 spectrum,” Eur. Phys. J. D 19, 31-44(2002). [CrossRef]
  36. H. Knöckel, B. Bodermann, and E. Tiemann, “High precision description of the rovibronic structure of the I2 B-X spectrum,” Eur. Phys. J. D 28, 199-209 (2004). [CrossRef]
  37. IodineSpec4, Iodine Spectrum Calculating Software, TOPTICA.
  38. S. A. Diddams, L. Hollberg, L. -S. Ma, and L. Robertsson, “Femtosecond-laser-based optical clockwork with instability ≤6.3×10−16 in 1 s,” Opt. Lett. 27, 58-60 (2002). [CrossRef]
  39. J. J. Snyder, R. K. Raj, D. Bloch, and M. Ducloy, “High-sensitivity nonlinear spectroscopy using a frequency-offset pump,” Opt. Lett. 5, 163-165 (1980). [CrossRef] [PubMed]
  40. J. Zhang, Z. H. Lu, Y. H. Wang, T. Liu, A. Stejskal, Y. N. Zhao, R. Dumke, Q. H. Gong, and L. J. Wang, “Exact frequency comb mode number determination in precision optical frequency measurements,” Laser Phys. 17, 1025-1028 (2007). [CrossRef]
  41. H.-M. Fang, S. C. Wang, and J.-T. Shy, “Pressure and power broadening of the a10 component of R(56)32-0 transition of molecular iodine at 532 nm,” Opt. Commun. 257, 76-83 (2006). [CrossRef]
  42. L. J. Gillespie and L. H. D. Fraser, “The normal vapor pressure of crystalline iodine,” J. Am. Chem. Soc. 58, 2260-2263 (1936). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited