OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Jospeh N. Mait
  • Vol. 48, Iss. 3 — Jan. 20, 2009
  • pp: 442–449

Measurement range of phase retrieval in optical surface and wavefront metrology

Gregory R. Brady and James R. Fienup  »View Author Affiliations

Applied Optics, Vol. 48, Issue 3, pp. 442-449 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (599 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Phase retrieval employs very simple data collection hardware and iterative algorithms to determine the phase of an optical field. We have derived limitations on phase retrieval, as applied to optical surface and wavefront metrology, in terms of the speed of beam (i.e., f-number or numerical aperture) and amount of aberration using arguments based on sampling theory and geometrical optics. These limitations suggest methodologies for expanding these ranges by increasing the complexity of the measurement arrangement, the phase-retrieval algorithm, or both. We have simulated one of these methods where a surface is measured at unusual conjugates.

© 2009 Optical Society of America

OCIS Codes
(100.5070) Image processing : Phase retrieval
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure
(220.4840) Optical design and fabrication : Testing

ToC Category:
Image Processing

Original Manuscript: July 3, 2008
Revised Manuscript: October 31, 2008
Manuscript Accepted: December 9, 2008
Published: January 12, 2009

Gregory R. Brady and James R. Fienup, "Measurement range of phase retrieval in optical surface and wavefront metrology," Appl. Opt. 48, 442-449 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik (Jena) 35, 237-246 (1972).
  2. J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett. 3, 27-29 (1978). [CrossRef] [PubMed]
  3. J. N. Cederquist, J. R. Fienup, J. C. Marron, and R. G. Paxman, “Phase retrieval from experimental far-field data,” Opt. Lett. 13, 619-621 (1988). [CrossRef] [PubMed]
  4. J. N. Cederquist, J. R. Fienup, C. C. Wackerman, S. R. Robinson, and D. Kryskowski, “Wave-front phase estimation from Fourier intensity measurements,” J. Opt. Soc. Am. A 6, 1020-1026 (1989). [CrossRef]
  5. J. R. Fienup, “Phase-retrieval algorithms for a complicated optical system,” Appl. Opt. 32, 1737-1746 (1993). [CrossRef] [PubMed]
  6. J. R. Fienup, J. C. Marron, T. J. Schulz, and J. H. Seldin, “Hubble space telescope characterized by using phase retrieval algorithms,” Appl. Opt. 32, 1747-1768 (1993). [CrossRef] [PubMed]
  7. B. H. Dean, D. L. Aronstein, J. S. Smith, R. Shiri, and D. S. Acton, “Phase retrieval algorithm for JWST flight and testbed telescope,” Proc. SPIE 6265, 626511 (2005). [CrossRef]
  8. G. E. Sommargren, D. W. Phillion, M. A. Johnson, N. Q. Nguyen, A. Barty, F. J. Snell, D. R. Dillon, and L. S. Bradsher, “100-picometer interferometry for EUVL,” Proc. SPIE 4688, 316-28 (2002). [CrossRef]
  9. Joseph W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts, 2003), Chap. 9.
  10. For example, the Sony ICX625 CCD Image Sensor.
  11. P. Dumas, J. Fleig, G. Forbes, and P. E. Murphy, “Extending the range of interferometry through subaperture stitching,” Proc. SPIE TD02, 134-7 (2003).
  12. M. Bray, “Stitching interferometer for large optics using a standard interferometer: description of an automated system [for ICF optics],” Proc. SPIE 3047, 911-18 (1997).
  13. J. R. Fienup, “Phase retrieval for undersampled broadband images,” J. Opt. Soc. Am. A 16, 1831-1839 (1999). [CrossRef]
  14. S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20, 21-36 (2003). [CrossRef]
  15. W. T. Welford, Aberrations of Optical Systems (Taylor & Francis, 1986), Chap. 7.
  16. W. T. Welford, Aberrations of Optical Systems (Taylor & Francis, 1986), Chap. 8.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited