OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Jospeh N. Mait
  • Vol. 48, Iss. 3 — Jan. 20, 2009
  • pp: 458–463

Optical resonant sensors: a method to reduce the effect of thermal drift

Thanh Le, Anatoliy Savchenkov, Nan Yu, Lute Maleki, and W. H. Steier  »View Author Affiliations


Applied Optics, Vol. 48, Issue 3, pp. 458-463 (2009)
http://dx.doi.org/10.1364/AO.48.000458


View Full Text Article

Enhanced HTML    Acrobat PDF (1058 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The use of a whispering gallery mode (WGM) resonator with an ultrahigh quality factor Q is promising in highly sensitive, label-free, lab-on-a-chip sensor applications. We investigated a novel method of using the differential frequency of TE and TM modes to reduce the thermal noise baseline, which commonly limits the sensitivity of WGM sensors. We studied the temperature dependence of WGM based sensors and experimentally demonstrated the reduction of temperature fluctuation and thus a significant improvement in the practical sensor detection limit.

© 2009 Optical Society of America

OCIS Codes
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(140.4780) Lasers and laser optics : Optical resonators
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(230.5750) Optical devices : Resonators

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: July 1, 2008
Revised Manuscript: November 25, 2008
Manuscript Accepted: December 19, 2008
Published: January 12, 2009

Virtual Issues
Vol. 4, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Thanh Le, Anatoliy Savchenkov, Nan Yu, Lute Maleki, and W. H. Steier, "Optical resonant sensors: a method to reduce the effect of thermal drift," Appl. Opt. 48, 458-463 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-3-458


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes. Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3-14 (2006). [CrossRef]
  2. C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134-142 (2006). [CrossRef]
  3. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059(2002). [CrossRef]
  4. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering gallery modes in microsphere by protein adsorption,” Opt. Lett. 28, 272-274 (2003). [CrossRef] [PubMed]
  5. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005). [CrossRef]
  6. A. Ksendzov and Y. Lin, “Integrated optics ring-resonator sensors for protein detection,” Opt. Lett. 30, 3344-3346 (2005). [CrossRef]
  7. V. Zamora, A. Diez, M. V. Andres, and B. Gimeno, “Refractometric sensor based on whispering-gallery modes of thin capillaries,” Opt. Express 15, 12011-12016 (2007). [CrossRef] [PubMed]
  8. R. W. Boyd and J. E. Heebner, “Sensitive disk resonator photonic biosensor,” Appl. Opt. 40, 5742-5747 (2001). [CrossRef]
  9. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007). [CrossRef] [PubMed]
  10. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005). [CrossRef]
  11. J. D. Suter, I. M. White, H. Zhu, and X. Fan, “Thermal characterization of liquid core optical ring resonators,” Appl. Opt. 46, 389-396 (2007). [CrossRef] [PubMed]
  12. A. A. Savchenko, A. B. Matsko, V. S. Ilchenko, N. Yu, and L. Maleki, “Whispering-gallery-mode resonators as frequency references. II. Stabilization,” J. Opt. Soc. Am. B 24, 2988-2997 (2007). [CrossRef]
  13. Melles Griot, http://optics.mellesgriot.com/opguide/mp_3_2.htm.
  14. C. C. Lam, P. T. Leung, and K. Young, “Explicit asymptotic formulas for positions, widths and strengths of resonances in Mie scattering,” J. Opt. Soc. Am. B 9, 1585-1592 (1992). [CrossRef]
  15. T. Le, A. A. Savchenkov, H. Tazawa, W. H. Steier, and L. Maleki, “Polymer optical waveguide vertically coupled to high Q whispering-gallery resonators,” IEEE Photonics Technol. Lett. 18, 859-861 (2006). [CrossRef]
  16. Z. Weissman, E. Brand, I. Tsimberov, D. Brook, and S. Ruschin, “Mach-Zehnder, type, evanescent wave sensor, using periodically segmented waveguide,” Laser and Electro-Optics Society Annual Meeting, 1998, LEOS'98 (IEEE, 1998), Vol. 2, pp. 85-86.
  17. J. L. Remo, “Reduced-noise-displacement measurements with a correlated differential photodiode sensors,” Appl. Opt. 36, 5488-5493 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited