OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Jospeh N. Mait
  • Vol. 48, Iss. 3 — Jan. 20, 2009
  • pp: 497–503

Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers

Lei Wei, Lars Eskildsen, Johannes Weirich, Lara Scolari, Thomas Tanggaard Alkeskjold, and Anders Bjarklev  »View Author Affiliations


Applied Optics, Vol. 48, Issue 3, pp. 497-503 (2009)
http://dx.doi.org/10.1364/AO.48.000497


View Full Text Article

Enhanced HTML    Acrobat PDF (912 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We infiltrate photonic crystal fibers with a negative dielectric anisotropy liquid crystal. A 396 nm bandgap shift is obtained in the temperature range of 22 80 ° C , and a 67 nm shift of long-wavelength bandgap edge is achieved by applying a voltage of 200 Vrms . The polarization sensitivity and corresponding activation loss are measured using polarized light and a full broadband polarization control setup. The electrically induced phase shift on the Poincaré sphere and corresponding birefringence change are also measured. According to the results, tunable wave plates working in the wavelength range of 1520 1580 nm and a potential for realizing a polarimeter working at the 1310 nm region are experimentally demonstrated.

© 2009 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(230.3720) Optical devices : Liquid-crystal devices
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 1, 2008
Manuscript Accepted: November 19, 2008
Published: January 13, 2009

Citation
Lei Wei, Lars Eskildsen, Johannes Weirich, Lara Scolari, Thomas Tanggaard Alkeskjold, and Anders Bjarklev, "Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers," Appl. Opt. 48, 497-503 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-3-497


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358-362 (2003). [CrossRef] [PubMed]
  2. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9, 698-713 (2001). [CrossRef] [PubMed]
  3. C. Kerbage and B. J. Eggleton, “Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber,” Opt. Express 10, 246-255 (2002). [PubMed]
  4. F. Du, Y. Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181-2183(2004). [CrossRef]
  5. R. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, and B. J. Eggleton, “Tunable photonic band gap fiber,” in Optical Fiber Communications Conference, A. Sawchuk, ed., (Optical Society of America, 2002), Vol. 70 of OSA Trends in Optics and Photonics, paper ThK3. [CrossRef]
  6. T. T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibers,” Opt. Express 11, 2589-2596 (2003). [CrossRef] [PubMed]
  7. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S.-T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12, 5857-5871 (2004). [CrossRef] [PubMed]
  8. M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 819-821 (2005). [CrossRef]
  9. L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13, 7483-7496 (2005). [CrossRef] [PubMed]
  10. T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17, 985-991 (2006). [CrossRef]
  11. D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis, “Tunable highly birefringent bandgap-guiding liquid-crystal microstructured fibers,” J. Lightwave Technol. 24, 3427-3432(2006). [CrossRef]
  12. D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15, 7901-7912 (2007). [CrossRef] [PubMed]
  13. T. T. Alkeskjold and A. Bjarklev, “Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter,” Opt. Lett. 32, 1707-1709 (2007). [CrossRef] [PubMed]
  14. D. Noordegraaf, L. Scolari, J. Lægsgaard, T. T. Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S.-T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett. 33, 986-988 (2008). [CrossRef] [PubMed]
  15. J. Li, C. -H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” IEEE OSA J. Disp. Technol. 1, 51-61 (2005). [CrossRef]
  16. J. Li, S. Gauza, and S.-T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96, 19-24(2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited