OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Jospeh N. Mait
  • Vol. 48, Iss. 3 — Jan. 20, 2009
  • pp: 512–524

Scanning tropospheric ozone and aerosol lidar with double-gated photomultipliers

Janet L. Machol, Richard D. Marchbanks, Christoph J. Senff, Brandi J. McCarty, Wynn L. Eberhard, William A. Brewer, Ronald A. Richter, Raul J. Alvarez, II, Daniel C. Law, Ann M. Weickmann, and Scott P. Sandberg  »View Author Affiliations


Applied Optics, Vol. 48, Issue 3, pp. 512-524 (2009)
http://dx.doi.org/10.1364/AO.48.000512


View Full Text Article

Enhanced HTML    Acrobat PDF (1210 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Ozone Profiling Atmospheric Lidar is a scanning four-wavelength ultraviolet differential absorption lidar that measures tropospheric ozone and aerosols. Derived profiles from the lidar data include ozone concentration, aerosol extinction, and calibrated aerosol backscatter. Aerosol calibrations assume a clear air region aloft. Other products include cloud base heights, aerosol layer heights, and scans of particulate plumes from aircraft. The aerosol data range from 280 m to 12 km with 5 m range resolution, while the ozone data ranges from 280 m to about 1.2 km with 100 m resolution. In horizontally homogeneous atmospheres, data from multiple-elevation angles is combined to reduce the minimum altitude of the aerosol and ozone profiles to about 20 m . The lidar design, the characterization of the photomultiplier tubes, ozone and aerosol analysis techniques, and sample data are described. Also discussed is a double-gating technique to shorten the gated turn-on time of the photomultiplier tubes, and thereby reduce the detection of background light and the outgoing laser pulse.

© 2009 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(010.4950) Atmospheric and oceanic optics : Ozone
(040.5250) Detectors : Photomultipliers
(280.1100) Remote sensing and sensors : Aerosol detection
(280.1120) Remote sensing and sensors : Air pollution monitoring
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: July 30, 2008
Revised Manuscript: December 11, 2008
Manuscript Accepted: December 15, 2008
Published: January 14, 2009

Citation
Janet L. Machol, Richard D. Marchbanks, Christoph J. Senff, Brandi J. McCarty, Wynn L. Eberhard, William A. Brewer, Ronald A. Richter, Raul J. Alvarez, II, Daniel C. Law, Ann M. Weickmann, and Scott P. Sandberg, "Scanning tropospheric ozone and aerosol lidar with double-gated photomultipliers," Appl. Opt. 48, 512-524 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-3-512


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. J. Megie, G. Ancellet, and J. Pelon, “Lidar measurements of ozone vertical profiles,” Appl. Opt. 24, 3454-3463 (1985). [CrossRef] [PubMed]
  2. G. Ancellet, A. Papayannis, J. Pelon, and G. Mégie, “DIAL tropospheric ozone measurement using a Nd:YAG laser and the Raman shifting technique,” J. Atmos. Ocean. Technol. 6, 832-839 (1989). [CrossRef]
  3. U. Kempfer, W. Carnuth, R. Lotz, and T. Trickl, “A wide-range UV lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145-3164 (1994). [CrossRef]
  4. E. Wallinder, H. Edner, P. Ragnakson, and S. Svanberg, “Vertically sounding ozone lidar system based on a KrF excimer laser,” Phys. Scr. 55, 714-718 (1997). [CrossRef]
  5. I. Veselovskii, and B. Barchunov, “Excimer-laser-based lidar for tropospheric ozone monitoring,” Appl. Phys. B 68, 1131-1137 (1999). [CrossRef]
  6. J.-L. Baray, J. Leveau, J. Porteneuve, G. Ancellet, P. Keckhut, F. Posny, and S. Baldy, “Description and evaluation of a tropospheric ozone lidar implemented on an existing lidar in the Southern Subtropics,” Appl. Opt. 38, 6808-6817 (1999). [CrossRef]
  7. I. S. McDermid, G. Beyerle, D. A. Haner, and T. Leblanc, “Redesign and improved performance of the tropospheric ozone lidar at the Jet Propulsion Laboratory Table Mountain Facility,” Appl. Opt. 41, 7550-7555 (2002). [CrossRef]
  8. M. H. Proffitt, and A. O. Langford, “Ground-based differential absorption lidar system for day or night measurements of ozone throughout the free troposphere,” Appl. Opt. 36, 2568-2585 (1997). [CrossRef] [PubMed]
  9. H. Eisele, H. E. Scheel, R. Sladkovic, and T. Trickl, “High-resolution lidar measurements of Stratosphere-Troposphere exchange,” J. Atmos. Sci. 56, 319-330 (1999). [CrossRef]
  10. M. Nakazato, T. Nagai, T. Sakai, and Y. Hirose, “Tropospheric ozone differential-absorption lidar using stimulated Raman scattering in carbon dioxide,” Appl. Opt. 46, 2269-2279 (2007). [CrossRef] [PubMed]
  11. E. V. Browell, A. F. Carter, S. T. Shipley, R. J. Allen, C. F. Butler, M. N. Mayo, J. H. Siviter, Jr., and W. M. Hall, “NASA multipurpose airborne DIAL system and measurements of ozone and aerosol profiles,” Appl. Opt. 22, 522-534(1983). [CrossRef] [PubMed]
  12. R. J. Alvarez II, C. J. Senff, R. M. Hardesty, D. D. Parrish, W. T. Luke, T. B. Watson, P. H. Daum, and N. Gillani, “Comparisons of airborne lidar measurements of ozone with airborne in situ measurements during the 1995 Southern Oxidants Study,” J. Geophys. Res. 103, 31155-31171 (1998). [CrossRef]
  13. G. Ancellet, and F. Ravetta, “Compact airborne lidar for tropospheric ozone: description and field measurements,” Appl. Opt. 37, 5509-5521 (1998). [CrossRef]
  14. R. J. Alvarez II, J. L. Machol, R. D. Marchbanks, A. M. Weickmann, D. C. Law, C. J. Senff, S. P. Sandberg, and W. A. Brewer, “First tests of the TOPAZ lidar for airborne measurements of tropospheric ozone and aerosol backscatter,” in Proceedings of the 7th International Symposium on Tropospheric Profiling: Needs and Technologies (National Center for Atmospheric Research, 2006), pp. 8.29-8.30.
  15. P. K. Quinn, D. J. Coffman, T. S. Bates, E. J. Welton, D. S. Covert, T. L. Miller, J. E. Johnson, S. Maria, L. Russell, R. Arimoto, C. M. Carrico, M. J. Rood, and J. Anderson, “Aerosol optical properties measured on board the Ronald H. Brown during ACE-Asia as a function of aerosol chemical composition and source region,” J. Geophys. Res. 109, doi:10.1029/2003JD004010 (2004). [CrossRef]
  16. B. Schmid, R. Ferrare, C. Flynn, R. Elleman, D. Covert, A. Strawa, E. Welton, D. Turner, H. Jonsson, J. Redemann, J. Eilers, K. Ricci, A. G. Hallar, M. Clayton, J. Michalsky, A. Smirnov, B. Holben, and J. Barnard, “How well do state-of-the-art techniques measuring the vertical profile of tropospheric aerosol extinction compare?,” J. Geophys. Res. 111, doi:10.1029/2005JD005837 (2006). [CrossRef]
  17. G. Feingold, W. L. Eberhard, D. E. Veron, and M. Previdi, “First measurements of the Twomey indirect effect using ground-based remote sensors,” Geophys. Res. Lett. 30, 1287-1290 (2003). [CrossRef]
  18. C. T. Hall, T. G. Thrasher, J. A. Draper, C. A. Holsclaw, R. L. Wayson, B. Y. Kim, and G. G. Fleming, “Environment in the Balance,” in A&WMA's 96th Annual Conference & Exhibition (Air and Waste Management Association, 2003), paper 69574.
  19. Y. Zhao, R. M. Hardesty, and M. J. Post, “Multibeam transmitter for signal dynamic range reduction in incoherent lidar systems,” Appl. Opt. 31, 7623-7632 (1992). [CrossRef] [PubMed]
  20. J. J. Carrol, and Y. Zhao, “Comparison of in situ and DIAL measured vertical tropospheric ozone profiles,” in Third International Symposium on Tropospheric Profiling: Needs and Technologies (Max-Planck-Gesellschaft zur Förderung der Wissenschaften, 1994), pp. 63-65.
  21. Y. Zhao, J. N. Howell, and R. M. Hardesty, “Transportable lidar for the measurement of ozone concentration and flux profiles in the lower troposphere,” in Proceedings of 16th International Laser Radar Conference (NASA, 1992), pp. 185-187.
  22. Y. Zhao, R. D. Marchbanks, C. J. Senff, and H. D. Johnson, “Lidar profiling of ozone and aerosol in the SCOS97-NARSTO Experiment,” in Proceedings of the 19th International Laser Radar Conference (NASA, 1998), pp. 375-378.
  23. Y. Zhao, R. D. Marchbanks, L. Dolislager, C. Senff, W. L. Eberhard, and R. M. Hardesty, “Vertical profiles of ozone concentrations and ozone advection fluxes in Southern California measured by the ETL ozone lidar,” in Proceedings of the 10th Joint Conference on the Applications of Air Pollution Meteorology with the A&WMA (American Meteorological Society, 1998), pp. 200-202.
  24. L. S. Darby, R. M. Banta, W. A. Brewer, W. D. Neff, R. D. Marchbanks, B. J. McCarty, C. J. Senff, A. B. White, W. M. Angevine, and E. J. Williams, “Vertical variations in O3 concentrations before and after a gust front passage,” J. Geophys. Res. 107, doi:10.1029/2001JD000996 (2002). [CrossRef]
  25. R. L. Wayson, G. G. Fleming, B. Kim, W. L. Eberhard, W. A. Brewer, J. Draper, J. Pehrson, and R. Johnson, “The use of lidar to characterize aircraft exhaust plumes,” in Proceedings of the AWMA 96th Annual Meeting & Exhibition (Air and Waste Management Association, 2003), p. 69965.
  26. W. L. Eberhard, W. A. Brewer, and R. L. Wayson, “Lidar observation of jet engine exhaust for air quality,” in Second Symposium on Lidar Applications, Combined Preprints CD-ROM, 85th AMS Annual Meeting (American Meteorological Society, 2005).
  27. W. L. Eberhard, W. A. Brewer, and R. L. Wayson, “Lidar observations of jet engine exhaust for air quality,” Bull. Am. Meteorol. Soc. 86, 482-483 (2005).
  28. C. J. Senff, W. L. Eberhard, R. J. Alvarez II, R. D. Marchbanks, J. L. George, B. J. McCarty, R. M. Banta, A. B. White, W. M. Angevine, E. J. Williams, and K. B. Carpenter, “Vertical structure of ozone over the Gulf of Maine observed during NEAQS 2002: implications for air quality in New England,” in The Proceedings of the 2003 AGU Fall Meeting (American Geophysical Union, 2003), paper A41A-04.
  29. W. M. Angevine, C. J. Senff, A. B. White, E. J. Williams, J. Koemer, S. T. K. Miller, R. Talbot, P. E. Johnston, S. A. McKeen, and T. Downs, “Coastal boundary layer influence on pollution transport in New England,” J. Appl. Meteorol. 43, 1425-1437 (2004). [CrossRef]
  30. L. S. Darby, S. A. McKeen, C. J. Senff, A. B. White, R. M. Banta, M. J. Post, W. A. Brewer, R. Marchbanks, R. J. Alvarez II, S. E. Peckham, H. Mao, and R. Talbot, “Ozone differences between near-coastal and offshore sites in New England: role of meteorology,” J. Geophys. Res. 112, doi:10.1029/2007JD008446 (2007). [CrossRef]
  31. L. de Schoulepnikoff, V. Mitev, V. Simeonov, B. Calpini, and H. van den Bergh, “Experimental investigation of high-power single-pass Raman shifters in the ultraviolet with Nd:YAG and KrF lasers,” Appl. Opt. 36, 5026-5043 (1997). [CrossRef] [PubMed]
  32. D. A. Haner, and I. S. McDermid, “Stimulated Raman shifting of the Nd:YAG fourth harmonic (266 nm) in H2, HD, and D2,” IEEE J. Quantum Electron. 26, 1292-1298 (1990). [CrossRef]
  33. S. Tzortzakis, G. Tsaknakis, and A. Papayannis, and A. A. Serafetinides, “Investigation of the spatial profile of stimulated Raman scattering beams in D2 and H2 gases using a pulsed Nd:YAG laser at 266 nm,” Appl. Phys. B 79, 71-75(2004). [CrossRef]
  34. V. Simeonov, B. Calpini, and H. v. d. Bergh, “New Raman-shifted sources for ozone DIAL applications,” in Proceedings of the 21st International Laser Radar Conference, L. Bissonnette, G. Roy, and G. Vallee, eds. (Defence R&D Canada, 2002), pp. 19-22.
  35. S. E. Bisson, “Parametric study of an excimer-pumped, nitrogen Raman shifter for lidar applications,” Appl. Opt. 34, 3406-3412 (1995). [CrossRef] [PubMed]
  36. V. A. Kovalev, and W. E. Eichinger, Elastic Lidar: Theory, Practice, and Analysis Methods (Wiley, 2003).
  37. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, and R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering 1. Methods and comparisons,” J. Geophys. Res. 103, 19663-19672 (1998). [CrossRef]
  38. F. Russo, D. N. Whiteman, B. Demoz, and R. M. Hoff, “Validation of the Raman lidar algorithm for quantifying aerosol extinction,” Appl. Opt. 45, 7073-7088 (2006). [CrossRef] [PubMed]
  39. R. J. Hill, W. A. Brewer, and S. C. Tucker, “Platform-motion correction of velocity measured by Doppler lidar,” J. Atmos. Ocean. Technol. 25, 1369-1382 (2008). [CrossRef]
  40. Y. Zhao, “Signal-induced fluorescence in photomultipliers in differential absorption lidar systems,” Appl. Opt. 38, 4639-4648 (1999). [CrossRef]
  41. M. P. Bristow, D. H. Bundy, and A. G. Wright, “Signal linearity, gain stability, and gating in photomultipliers: application to differential absorption lidars,” Appl. Opt. 34, 4437-4452 (1995). [CrossRef] [PubMed]
  42. Photomultiplier Tubes: Basics and Applications (Hamamatsu Photonics K.K., 2006).
  43. M. P. Bristow, “Suppression of afterpulsing in photomultipliers by gating the photocathode,” Appl. Opt. 41, 4975-4987(2002). [CrossRef] [PubMed]
  44. H. S. Lee, G. K. Schwemmer, C. L. Korb, M. Dombrowski, and C. Prasad, “Gated photomultiplier response characterization for DIAL measurements,” Appl. Opt. 29, 3303-3315 (1990). [CrossRef] [PubMed]
  45. L. Pagano, Hamamatsu Photonics K. K, 360 Foothill Road, Bridgewater, N.J. 08807 (personal communication, 2006).
  46. E. A. Korneeva, and S. G. Savchenkova, “Luminescence of optical glass,” J. Appl. Spectrosc. 19, 1145-1147 (1973). [CrossRef]
  47. A. Engel, SCHOTT AG, Mainz, Germany (personal communication, 2006).
  48. J. D. W. Barrick, “Gating characteristics of photomultiplier tubes for lidar applications,” 87699, Technical memorandum (NASA, 1986).
  49. J. M. Wilczak, E. E. Gossard, W. D. Neff, and W. L. Eberhard, “Ground-based remote sensing of the atmospheric boundary layer: 25 years of progress,” Boundary-Layer Meteorol. 78, 321-349 (1996). [CrossRef]
  50. K. J. Davis, N. Gamage, C. R. Hagelberg, C. Kiemle, D. H. Lenschow, and P. P. Sullivan, “An objective method for deriving atmospheric structure from airborne lidar observations,” J. Atmos. Ocean. Technol. 17, 1455-1468 (2000). [CrossRef]
  51. R. M. Measures, Laser Remote Sensing Fundamentals and Applications (Krieger, 1992).
  52. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652-653 (1984). [CrossRef] [PubMed]
  53. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211-220 (1981). [CrossRef] [PubMed]
  54. F. Marenco, V. Santacesaria, A. F. Bais, D. Malis, A. D. Sarra, A. Papayannis, and C. Zerefos, “Optical properties of tropospheric aerosols determined by lidar and spectrophotometric measurements (Photochemical Activity and Solar Ultraviolet Radiation campaign),” Appl. Opt. 36, 6875-6886(1997). [CrossRef]
  55. W. L. Eberhard, R. L. Wayson, W. A. Brewer, R. D. Marchbanks, B. J. McCarty, A. W. Weickmann, and G. G. Fleming, “Lidar method to measure soot emissions rates from aircraft jet engines,” in Abstract Book, 2006 Internationals Aerosol Conference (American Association for Aerosol Research, 2006), pp. 407-408.
  56. E. V. Browell, S. Ismail, and S. T. Shipley, “Ultraviolet DIAL measurements of O3 profiles in regions of spatially inhomogeneous aerosols,” Appl. Opt. 24, 2827-2836 (1985). [CrossRef] [PubMed]
  57. P. Völger, J. Bösenberg, and I. Schult, “Scattering properties of selected model aerosols calculated at uv-wavelengths: implications for DIAL measurements of tropospheric ozone,” Contr. Atmos. Phys. 69, 177-187 (1996).
  58. D. H. Lenschow, V. G. Wulfmeyer, and C. J. Senff, “Measuring second- through fourth-order moments in noisy data,” J. Atmos. Ocean. Technol. 17, 1330-1347 (2000). [CrossRef]
  59. X. Liu, K. Chance, C. E. Sioris, and T. P. Kurosu, “Impact of using different ozone cross sections on ozone profile retrievals from Global Ozone Monitoring Experiment (GOME) ultraviolet measurements,” Atmos. Chem. Phys. 7, 3571-3578 (2007). [CrossRef]
  60. J. E. Johnson, NOAA Pacific Marine Environmental Laboratory, 7600 Sand Point Way NE, Seattle, Wash., 98115 (personal communication, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited