OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Jospeh N. Mait
  • Vol. 48, Iss. 3 — Jan. 20, 2009
  • pp: 553–559

Time-gated total internal reflection fluorescence microscopy with a supercontinuum excitation source

Pierre Blandin, Sandrine Lévêque-Fort, Sandrine Lécart, Jack C. Cossec, Marie-Claude Potier, Zsolt Lenkei, Frédéric Druon, and Patrick Georges  »View Author Affiliations

Applied Optics, Vol. 48, Issue 3, pp. 553-559 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (510 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the instrumental development of a versatile total internal reflection fluorescence lifetime imaging microscopy setup illuminated by a supercontinuum laser source. It enables performing wide-field fluorescence lifetime imaging with subwavelength axial resolution for a large range of fluorophores. The short overall acquisition time and the axial resolution are well suited for dynamic neurobiological applications.

© 2009 Optical Society of America

OCIS Codes
(170.0180) Medical optics and biotechnology : Microscopy
(170.1530) Medical optics and biotechnology : Cell analysis
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(260.6970) Physical optics : Total internal reflection

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: June 20, 2008
Revised Manuscript: December 3, 2008
Manuscript Accepted: December 4, 2008
Published: January 14, 2009

Virtual Issues
Vol. 4, Iss. 3 Virtual Journal for Biomedical Optics

Pierre Blandin, Sandrine Lévêque-Fort, Sandrine Lécart, Jack C. Cossec, Marie-Claude Potier, Zsolt Lenkei, Frédéric Druon, and Patrick Georges, "Time-gated total internal reflection fluorescence microscopy with a supercontinuum excitation source," Appl. Opt. 48, 553-559 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Leterrier, J. Lainé, M. Darmon, H. Boudin, J. Rossier, and Z. Lenkei, “Constitutive activation drives compartment-selective endocytosis and axonal targeting of type 1 cannabinoid receptors,” J. Neurosci. 26, 3141-3153 (2006). [CrossRef] [PubMed]
  2. K. S. Vetrievel and G. Thinakaran, “Amyloidogenic processing of beta-amyloid precursor protein in intracellular compartments,” Neurology 66, S69-S73 (2006). [CrossRef]
  3. H. Wallrabe and A. Periasamy, “Imaging protein molecules using FRET and FLIM microscopy,” Curr. Opin. Biotechnol. 16, 19-27 (2005). [CrossRef] [PubMed]
  4. D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic 2, 764-774 (2001). [CrossRef] [PubMed]
  5. N. Thompson and B. Lagerholm, “Total internal reflection fluorescence: applications in cellular biophysics,” Curr. Opin. Biotechnol. 8, 58-64 (1997). [CrossRef] [PubMed]
  6. J. Burmeister, L. Olivier, W. Reichert, and G. Truskey, “Application of total internal reflection fluorescence microscopy to study cell adhesion to biomaterials,” Biomaterials 19, 307-325 (1998). [CrossRef] [PubMed]
  7. D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89, 141-145 (1981). [CrossRef] [PubMed]
  8. D. Axelrod, “Selective imaging of surface fluorescence with very high aperture microscope objectives,” J Biomed. Opt. 6, 6-13 (2001). [CrossRef] [PubMed]
  9. S. Leveque-Fort, D. Papadopoulos, S. Forget, F. Balembois, and P. Georges, “Fluorescence lifetime imaging with a low repetition rate passively mode-locked diode-pumped Nd:YVO4 oscillator,” Opt. Lett. 30, 168-170 (2005). [CrossRef] [PubMed]
  10. P. Herman, H. J. Lin, and J. R. Lakowicz, “Lifetime based imaging,” in Biomedical Photonics Handbook (CRC Press, 2003). [CrossRef]
  11. J. Siegel, D. S. Elson, S. E. D. Webb, D. Parsons-Karavassilis, S. Lévêque-Fort, M. J. Cole, M. J. Lever, P. M. W. French, M. A. A. Neil, R. Juskaitis, L. O. Sucharov, and T. Wilson, “Whole-field five-dimensional fluorescence microscopy combining lifetime and spectral resolution with optical sectioning,” Opt. Lett. 26, 1338-1340 (2001). [CrossRef]
  12. I. Munro, J. McGinty, N. Galletly, J. Requejo-Isidro, P. M. P. Lanigan, D. S. Elson, C. Dunsby, M. A. A. Neil, M. J. Lever, G. W. H. Stamp, and P. M. W. French, “Toward the clinical application of time domain fluorescence lifetime imaging,” J Biomed. Opt. 10, 051403 (2005). [CrossRef] [PubMed]
  13. H. Schneckenburger, M. Wagner, M. Kretzschmar, W. Strauss, and R. Sailer, “Laser-assisted fluorescence microscopy for measuring cell membrane dynamics,” Photochem. Photobiol. Sci. 3, 817-822 (2004). [CrossRef] [PubMed]
  14. C. von Arnim, B. von Einem, P. Weber, M. Wagner, D. Schwanzar, R. Spoelgen, W. Strauss, and H. Schneckenburger, “Impact of cholesterol level upon APP and BACE proximity and APP cleavage,” Biochem. Biophys. Res. Comm. 370, 207-212 (2008). [CrossRef] [PubMed]
  15. H. Kano and H. Hamaguchi, “In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber,” Opt. Express 14, 2798-2804 (2006). [CrossRef] [PubMed]
  16. J. Tada, T. Kono, A. Suda, H. Mizuno, A. Miyawaki, K. Midorikawa, and F. Kannari, “Adaptively controlled supercontinuum pulse from a microstructure fiber for two-photon excited fluorescence microscopy,” Appl. Opt. 46, 3023-3030 (2007). [CrossRef] [PubMed]
  17. E. Auksorius, B. Boruah, C. Dunsby, P. Lanigan, G. Kennedy, M. Neil, and P. French, “Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging,” Opt. Lett. 33, 113-115 (2008). [CrossRef] [PubMed]
  18. K. K. Sharman, A. Periasamy, H. Ashworth, J. N. Demas, and N. H. Snow, “Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes,” Anal. Chem. 71, 947-952 (1999). [CrossRef] [PubMed]
  19. Y. Chen and A. Periasamy, “Characterization of two-photon excitation fluorescence lifetime imaging microscopy for protein localization,” Microsc. Res. Tech. 63, 72-80 (2004). [CrossRef]
  20. W. Becker, A. Bergmann, M. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63, 58-66(2004). [CrossRef]
  21. E. Merzlyak, J. Goedhart, D. Shcherbo, M. Bulina, A. Shcheglov, A. Fradkov, A. Gaintzea, K. Lukyanov, S. Lukyanov, T. Gadella, and D. Chudakov, “Bright monomeric red fluorescent protein with an extended fluorescence lifetime,” Nat. Methods 4, 555-557 (2007). [CrossRef] [PubMed]
  22. J. Zhang, Y. Ma, S. S. Taylor, and R. Y. Tsien, “Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering,” Proc. Nat. Acad. Sci. 98, 14997-15002 (2001). [CrossRef] [PubMed]
  23. S. Scheuermann, B. Hambsch, L. Hesse, J. Stumm, C. Schmidt, D. Beher, T. A. Bayer, K. Beyreuther, and G. Multhaup, “Homodimerization of amyloid precursor protein and its implication in the amyloidogenic pathway of Alzheimer's disease,” J. Biol. Chem. 276, 33923-33929 (2001). [CrossRef] [PubMed]
  24. L. Jozefowski, J. Fiutowski, T. Kawalec, and H. G. Rubahn, “Direct measurement of the evanescent wave polarization state,” J. Opt. Soc. Am. B 24, 624-628 (2007). [CrossRef]
  25. M. Gee, L. Lensun, T. Smith, and C. Scholes, “Time-resolved evanescent wave-induced fluorescence anisotropy for the determination of molecular conformational changes of proteins at an interface,” Eur. Biophys. J. 33, 130-139 (2004). [CrossRef]
  26. K. Suhling, J. Siegel, P. Lanigan, S. Lévêque-Fort, S. Webb, D. Phillips, D. Davis, and P. French, “Time-resolved fluorescence anisotropy imaging applied to live cells,” Opt. Lett. 29, 584-586 (2004). [CrossRef] [PubMed]
  27. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307, 538-544 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited